Abstract
Holt and Röver proved that finitely generated bounded automata groups have indexed co-word problem. Here we sharpen this result to show they are in fact co-ET0L.
Research supported by Australian Research Council grant DP160100486 and an Australian Government Research Training Program PhD Scholarship.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anīsīmov, A.V.: The group languages. Kibernetika (Kiev) 7(4), 18–24 (1971)
Asveld, P.R.J.: Controlled iteration grammars and full hyper-AFL’s. Inf. Control 34(3), 248–269 (1977)
Bleak, C., Matucci, F., Neunhöffer, M.: Embeddings into Thompson’s group \(V\) and \(co\cal{CF}\) groups. J. Lond. Math. Soc. (2) 94(2), 583–597 (2016). https://doi.org/10.1112/jlms/jdw04
Ciobanu, L., Diekert, V., Elder, M.: Solution sets for equations over free groups are EDT0L languages. Int. J. Algebra Comput. 26(5), 843–886 (2016). https://doi.org/10.1142/S0218196716500363
Ciobanu, L., Elder, M., Ferov, M.: Applications of L systems to group theory. Int. J. Algebra Comput. 28(2), 309–329 (2018). https://doi.org/10.1142/S0218196718500145
Culik II, K.: On some families of languages related to developmental systems. Int. J. Comput. Math. 4, 31–42 (1974). https://doi.org/10.1080/00207167408803079
Diekert, V., Elder, M.: Solutions of twisted word equations, EDT0L languages, and context-free groups. In: 44th International Colloquium on Automata, Languages, and Programming, LIPIcs. Leibniz International Proceedings in Informatics, vol. 80, Article No. 96, 14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2017)
Diekert, V., Jeż, A., Kufleitner, M.: Solutions of word equations over partially commutative structures. In: 43rd International Colloquium on Automata, Languages, and Programming, LIPIcs. Leibniz International Proceedings in Informatics, vol. 55, Article No. 127, 14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2016)
Elder, M., Kambites, M., Ostheimer, G.: On groups and counter automata. Int. J. Algebra Comput. 18(8), 1345–1364 (2008). https://doi.org/10.1142/S0218196708004901
Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word Processing in Groups. Jones and Bartlett Publishers, Boston (1992)
Gilman, R.H.: Formal languages and infinite groups. In: Geometric and Computational Perspectives on Infinite Groups, Minneapolis, MN and New Brunswick, NJ, 1994. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 25, pp. 27–51. American Mathematical Society, Providence (1996)
Grigorchuk, R.: On Burnside’s problem on periodic groups. Funktsional. Anal. i Prilozhen. 14(1), 53–54 (1980)
Gupta, N., Sidki, S.: On the Burnside problem for periodic groups. Mathematische Zeitschrift 182(3), 385–388 (1983). https://doi.org/10.1007/BF01179757
Holt, D.F., Rees, S., Röver, C.E., Thomas, R.M.: Groups with context-free co-word problem. J. Lond. Math. Soc. (2) 71(3), 643–657 (2005). https://doi.org/10.1112/S002461070500654X
Holt, D.F., Röver, C.E.: Groups with indexed co-word problem. Int. J. Algebra Comput. 16(5), 985–1014 (2006). https://doi.org/10.1142/S0218196706003359
König, D., Lohrey, M., Zetzsche, G.: Knapsack and subset sum problems in nilpotent, polycyclic, and co-context-free groups. In: Algebra and Computer Science, Contemporary Mathematics, vol. 677, pp. 129–144. American Mathematical Society, Providence (2016)
van Leeuwen, J.: Variations of a new machine model. In: 17th Annual Symposium on Foundations of Computer Science, Houston, Texas 1976, pp. 228–235. IEEE Computer Society, Long Beach, October 1976. https://doi.org/10.1109/SFCS.1976.35
Lehnert, J., Schweitzer, P.: The co-word problem for the Higman-Thompson group is context-free. Bull. Lond. Math. Soc. 39(2), 235–241 (2007). https://doi.org/10.1112/blms/bdl043
Lindenmayer, A.: Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theoret. Biol. 18(3), 280–99 (1968). https://doi.org/10.1016/0022-5193(68)90079-9
Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-order logic. Theoret. Comput. Sci. 37(1), 51–75 (1985). https://doi.org/10.1016/0304-3975(85)90087-8
Nekrashevych, V.: Self-similar Groups, Mathematical Surveys and Monographs, vol. 117. American Mathematical Society, Providence (2005). https://doi.org/10.1090/surv/117
Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997). https://doi.org/10.1007/978-3-642-59126-6
Rozenberg, G.: Extension of tabled OL-systems and languages. Int. J. Comput. Inf. Sci. 2, 311–336 (1973)
Sidki, S.: Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity. J. Math. Sci. (New York) 100(1), 1925–1943 (2000). https://doi.org/10.1007/BF02677504. Algebra, 12
Acknowledgments
The authors wish to thank Claas Röver, Michal Ferov and Laura Ciobanu for helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bishop, A., Elder, M. (2019). Bounded Automata Groups are co-ET0L. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds) Language and Automata Theory and Applications. LATA 2019. Lecture Notes in Computer Science(), vol 11417. Springer, Cham. https://doi.org/10.1007/978-3-030-13435-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-13435-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-13434-1
Online ISBN: 978-3-030-13435-8
eBook Packages: Computer ScienceComputer Science (R0)