Abstract
Gandhi, Khoussainov, and Liu introduced and studied a generalized model of finite automata able to work over algebraic structures, in particular the real numbers. The present paper continues the study of (a variant) of this model dealing with computations on infinite strings of reals. Our results support the view that this is a suitable model of finite automata over the real numbers. We define Büchi and Muller versions of the model and show, among other things, several closure properties of the languages accepted, a real number analogue of McNaughton’s theorem, and give a metafinite logic characterizing the infinite languages acceptable by non-deterministic Büchi automata over \({\mathbb R}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that if the counter has value \(T-1\) also non-deterministic automata have to reset all register values to 0; only the next state can then be chosen non-deterministically.
- 2.
A semi-algebraic set in \({\mathbb R}^n\) is a set that can be defined as a Boolean combination (using finite unions, intersections, and complements) of solution sets of polynomial equalities and inequalities.
References
Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-0701-6
Gandhi, A., Khoussainov, B., Liu, J.: Finite automata over structures. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 373–384. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29952-0_37
Grädel, E., Gurevich, Y.: Metafinite model theory. Inf. Comput. 140(1), 26–81 (1998)
Grädel, E., Meer, K.: Descriptive complexity theory over the real numbers. In: Leighton, F.T., Borodin, A. (eds.) Proceedings of the 27th STOC, pp. 315–324 (1995)
Hofmann, M., Lange, M.: Automatentheorie und Logik. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-18090-3
Khoussainov, B., Liu, J.: Decision problems for finite automata over infinite algebraic structures. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 3–11. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40946-7_1
Khoussainov, B., Nerode, A.: Automata Theory and Its Applications. Birkhäuser, Springer, Berlin (2001)
Makowsky, J.A., Meer, K.: Polynomials of bounded tree-width. In: Foundations of Computational Mathematics, Proceedings of the Smalefest, pp. 211–250. World Scientific (2002)
McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Inf. Control 9(5), 521–530 (1966)
Meer, K., Naif, A.: Generalized finite automata over real and complex numbers. Theor. Comput. Sci. 591, 85–98 (2015)
Meer, K., Naif, A.: Periodic generalized automata over the reals. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 168–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30000-9_13
Safra, S.: On the complexity of omega-automata. In: 29th Symposium on FOCS, New York, pp. 319–327 (1988)
Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_7
Acknowledgement
We thank all reviewers for their very thorough reading and many useful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Meer, K., Naif, A. (2019). Automata over Infinite Sequences of Reals. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds) Language and Automata Theory and Applications. LATA 2019. Lecture Notes in Computer Science(), vol 11417. Springer, Cham. https://doi.org/10.1007/978-3-030-13435-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-13435-8_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-13434-1
Online ISBN: 978-3-030-13435-8
eBook Packages: Computer ScienceComputer Science (R0)