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Preface

This volume contains a selection of the papers presented at LOPSTR 2018, the 28th
International Symposium on Logic-Based Program Synthesis and Transformation held
during September 4–6, 2018 at the the Goethe University Frankfurt am Main,
Germany. It was co-located with PPDP 2018, the 20th International ACM SIGPLAN
Symposium on Principles and Practice of Declarative Programming, and WFLP 2018,
the 26th International Workshop on Functional and Logic Programming. The
co-location of these related conferences has occurred several times and has been
stimulating and cross-fertilizing.

Previous LOPSTR symposia were held in Namur (2017), Edinburgh (2016),
Siena (2015), Canterbury (2014), Madrid (2013 and 2002), Leuven (2012 and 1997),
Odense (2011), Hagenberg (2010), Coimbra (2009), Valencia (2008), Lyngby (2007),
Venice (2006 and 1999), London (2005 and 2000), Verona (2004), Uppsala (2003),
Paphos (2001), Manchester (1998, 1992, and 1991), Stockholm (1996), Arnhem (1995),
Pisa (1994), and Louvain-la-Neuve (1993). More information about the symposium
can be found at: http://ppdp-lopstr-18.cs.uni-frankfurt.de/lopstr18.html.

The aim of the LOPSTR series is to stimulate and promote international research
and collaboration on logic-based program development. LOPSTR is open to contri-
butions on all aspects of logic-based program development, all stages of the software
life cycle, and issues of both programming-in-the-small and programming-in-the-large.
LOPSTR traditionally solicits contributions, in any language paradigm, in the areas of
synthesis, specification, transformation, analysis and verification, specialization, testing
and certification, composition, program/model manipulation, optimization, transfor-
mational techniques in software engineering, inversion, applications, and tools.
LOPSTR has a reputation for being a lively, friendly forum that allows for the pre-
sentation and discussion of both finished work and work in progress. Formal pro-
ceedings are produced only after the symposium so that authors can incorporate the
feedback from the conference presentation and discussion.

In response to the calls for papers, 29 contributions were submitted from ten
countries. The Program Committee accepted seven full papers for immediate inclusion
in the formal proceedings, and four more papers presented at the symposium were
accepted after a revision and another round of reviewing. Each submission was
reviewed by at least three Program Committee members or external referees. The paper
“Proving Program Properties as First-Order Satisfiability” by Salvador Lucas won the
best paper award, sponsored by Springer. In addition to the 11 contributed papers, this
volume includes the abstracts of the invited talks by three outstanding speakers:
Philippa Gardner (Imperial College London, UK) and Jorge A. Navas (SRI Interna-
tional, USA), whose talks were shared with PPDP, and Laure Gonnord (University of
Lyon 1, France), whose talk was shared with WFLP. We also had two invited tutorials:
Fabio Fioravanti (University of Chieti-Pescara, Italy) presented “The VeriMAP System

http://ppdp-lopstr-18.cs.uni-frankfurt.de/lopstr18.html


for Program Transformation and Verification” and Manuel Hermenegildo (IMDEA
Software Institute and Technical University of Madrid, Spain) summarized “25 Years
of Ciao.”

We want to thank the Program Committee members, who worked diligently to
produce high-quality reviews for the submitted papers, as well as all the external
reviewers involved in the paper selection. We are very grateful to the local organizer,
David Sabel, and his team for the great job they did in managing the symposium. Many
thanks also to Peter Thiemann, the Program Committee chair of PPDP, and Josep Silva,
the Program Committee chair of WFLP, with whom we interacted for coordinating the
events. We would also like to thank Andrei Voronkov for his excellent EasyChair
system that automates many of the tasks involved in chairing a conference.

Special thanks go to the invited speakers and to all the authors who submitted and
presented their papers at LOPSTR 2018. We also thank our sponsors, the Goethe
University Frankfurt am Main, the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation), and Springer for their cooperation and support in the organi-
zation of the symposium.

January 2019 Fred Mesnard
Peter J. Stuckey
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Abstracts of Invited Talks



Formal Methods for JavaScript

Philippa Gardner

Imperial College London, UK
pg@doc.ic.ac.uk

Abstract. We present a novel, unified approach to the development of com-
positional symbolic execution tools, which bridges the gap between traditional
symbolic execution and compositional program reasoning based on separation
logic. We apply our approach to JavaScript, providing support for full verifi-
cation, whole-program symbolic testing, and automatic compositional testing
based on bi-abduction.



Constrained Horn Clauses for Verification

Jorge Navas

SRI International, USA
Jorge.Navas@sri.com

Abstract. Developing scalable software verification tools is a very difficult task.
First, due to the undecidability of the verification problem, these tools, must be
highly tuned and engineered to provide reasonable efficiency and precision
trade-offs. Second, different programming languages come with very diverse
assortments of syntactic and semantic features. Third, the diverse encoding
of the verification problem makes the integration with other powerful solvers
and verifiers difficult. This talk presents SeaHorn – an open source automated
Constrained Horn clause-based reasoning framework. SeaHorn combines
advanced automated solving techniques based on Satisfiability Modulo Theory
(SMT) and Abstract Interpretation. SeaHorn is built on top of LLVM using its
front-end(s) to deal with the idiosyncrasies of the syntax and it highly benefits
from LLVM optimizations to reduce the verification effort. SeaHorn uses
Constrained Horn clauses (CHC) which are a uniform way to formally represent
a broad variety of transition systems while allowing many encoding styles of
verification conditions. Moreover, the recent popularity of CHC as an inter-
mediate language for verification engines makes it possible to interface SeaHorn
with a variety of new and emerging tools. All of these features make SeaHorn a
versatile and highly customizable tool which allows researchers to easily build
or experiment with new verification techniques.



Experiences in Designing Scalable Static
Analyses

Laure Gonnord

University of Lyon 1, France
Laure.Gonnord@univ-lyon1.fr

Abstract. Proving the absence of bugs in a given software (problem which has
been known to be intrinsically hard since Turing and Cook) is not the only
challenge in software development. Indeed, the ever growing complexity of
software increases the need for more trustable optimisations. Solving these two
problems (reliability, optimisation) implies the development of safe (without
false negative answers) and efficient (wrt memory and time) analyses, yet pre-
cise enough (with few false positive answers). In this talk I will present some
experiences in the design of scalable static analyses inside compilers, and try to
make a synthesis about the general framework we, together with my coauthors,
used to develop them. I will also show some experimental evidence of the
impact of this work on real-world compilers, as well as future perspective for
this area of research.



Abstracts of Invited Tutorials



The VeriMAP System for Program
Transformation and Verification

Fabio Fioravanti

University of Chieti-Pescara, Italy
fioravanti@unich.it

Abstract. Constrained Horn Clauses (CHC) are becoming very popular for
representing programs and verification problems, and several tools have been
developed for checking their satisfiability. In this tutorial we will survey recent
work on satisfiability-preserving transformation techniques for CHC and we will
show how the VeriMAP system can be used effectively to (i) generate CHC
verification conditions from the programming language semantics, (ii) prove
safety properties of imperative programs manipulating integers and arrays,
(iii) prove relational program properties, such as program equivalence and
non-interference, (iv) check the satisfiability of CHC with inductively-defined
data structures (e.g. lists and trees), (v) prove safety and controllability prop-
erties of time-aware business processes.



25 Years of Ciao

Manuel Hermenegildo

IMDEA Software Institute and Technical University of Madrid, Spain
herme@fi.upm.es

Abstract. Ciao is a logic-based, multi-paradigm programming language which
has pioneered over the years many interesting language- and programming
environment-related concepts. An example is the notion of programming lan-
guages as modular language-building tools rather than closed designs. Another
is the idea of dynamic languages that can optionally and gradually offer formal
guarantees, which is also a solution for the classic dichotomy between dynamic
and static typing: Ciao has many dynamic features (e.g., dynamically typed,
dynamic program modification) but includes an assertion language for (op-
tionally) declaring program properties and powerful tools for static inference
and static/dynamic checking of such assertions, testing, documentation, etc. We
will provide a hands-on overview of these features, concentrating on the novel
aspects, the motivations behind their design and implementation, their evolution
over time, and, specially, their use. In particular, we will show how the system
can be used not only as a programming tool and as a language design tool, but
also as a general-purpose program analysis and verification tool, based on the
technique of translating program semantics (ranging from source to bytecode,
LLVM, or assembly) into Horn-clause representation, and idea which Ciao also
introduced early on. Finally, we will present some recent work in areas such as
scalability, incrementality, or static vs. dynamic costs, as well as some future
plans and ideas.
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