
Lecture Notes in Computer Science 11408

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Fred Mesnard • Peter J. Stuckey (Eds.)

Logic-Based
Program Synthesis
and Transformation
28th International Symposium, LOPSTR 2018
Frankfurt/Main, Germany, September 4–6, 2018
Revised Selected Papers

123

Editors
Fred Mesnard
University of Reunion Island
Sainte-Clotilde, France

Peter J. Stuckey
Monash University
Melbourne, VIC, Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-13837-0 ISBN 978-3-030-13838-7 (eBook)
https://doi.org/10.1007/978-3-030-13838-7

Library of Congress Control Number: 2019932012

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-13838-7

Preface

This volume contains a selection of the papers presented at LOPSTR 2018, the 28th
International Symposium on Logic-Based Program Synthesis and Transformation held
during September 4–6, 2018 at the the Goethe University Frankfurt am Main,
Germany. It was co-located with PPDP 2018, the 20th International ACM SIGPLAN
Symposium on Principles and Practice of Declarative Programming, and WFLP 2018,
the 26th International Workshop on Functional and Logic Programming. The
co-location of these related conferences has occurred several times and has been
stimulating and cross-fertilizing.

Previous LOPSTR symposia were held in Namur (2017), Edinburgh (2016),
Siena (2015), Canterbury (2014), Madrid (2013 and 2002), Leuven (2012 and 1997),
Odense (2011), Hagenberg (2010), Coimbra (2009), Valencia (2008), Lyngby (2007),
Venice (2006 and 1999), London (2005 and 2000), Verona (2004), Uppsala (2003),
Paphos (2001), Manchester (1998, 1992, and 1991), Stockholm (1996), Arnhem (1995),
Pisa (1994), and Louvain-la-Neuve (1993). More information about the symposium
can be found at: http://ppdp-lopstr-18.cs.uni-frankfurt.de/lopstr18.html.

The aim of the LOPSTR series is to stimulate and promote international research
and collaboration on logic-based program development. LOPSTR is open to contri-
butions on all aspects of logic-based program development, all stages of the software
life cycle, and issues of both programming-in-the-small and programming-in-the-large.
LOPSTR traditionally solicits contributions, in any language paradigm, in the areas of
synthesis, specification, transformation, analysis and verification, specialization, testing
and certification, composition, program/model manipulation, optimization, transfor-
mational techniques in software engineering, inversion, applications, and tools.
LOPSTR has a reputation for being a lively, friendly forum that allows for the pre-
sentation and discussion of both finished work and work in progress. Formal pro-
ceedings are produced only after the symposium so that authors can incorporate the
feedback from the conference presentation and discussion.

In response to the calls for papers, 29 contributions were submitted from ten
countries. The Program Committee accepted seven full papers for immediate inclusion
in the formal proceedings, and four more papers presented at the symposium were
accepted after a revision and another round of reviewing. Each submission was
reviewed by at least three Program Committee members or external referees. The paper
“Proving Program Properties as First-Order Satisfiability” by Salvador Lucas won the
best paper award, sponsored by Springer. In addition to the 11 contributed papers, this
volume includes the abstracts of the invited talks by three outstanding speakers:
Philippa Gardner (Imperial College London, UK) and Jorge A. Navas (SRI Interna-
tional, USA), whose talks were shared with PPDP, and Laure Gonnord (University of
Lyon 1, France), whose talk was shared with WFLP. We also had two invited tutorials:
Fabio Fioravanti (University of Chieti-Pescara, Italy) presented “The VeriMAP System

http://ppdp-lopstr-18.cs.uni-frankfurt.de/lopstr18.html

for Program Transformation and Verification” and Manuel Hermenegildo (IMDEA
Software Institute and Technical University of Madrid, Spain) summarized “25 Years
of Ciao.”

We want to thank the Program Committee members, who worked diligently to
produce high-quality reviews for the submitted papers, as well as all the external
reviewers involved in the paper selection. We are very grateful to the local organizer,
David Sabel, and his team for the great job they did in managing the symposium. Many
thanks also to Peter Thiemann, the Program Committee chair of PPDP, and Josep Silva,
the Program Committee chair of WFLP, with whom we interacted for coordinating the
events. We would also like to thank Andrei Voronkov for his excellent EasyChair
system that automates many of the tasks involved in chairing a conference.

Special thanks go to the invited speakers and to all the authors who submitted and
presented their papers at LOPSTR 2018. We also thank our sponsors, the Goethe
University Frankfurt am Main, the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation), and Springer for their cooperation and support in the organi-
zation of the symposium.

January 2019 Fred Mesnard
Peter J. Stuckey

VI Preface

Organization

Program Committee

Elvira Albert Universidad Complutense de Madrid, Spain
Sandrine Blazy University of Rennes 1 - IRISA, France
Mats Carlsson SICS, Sweden
Agostino Dovier Università degli Studi di Udine, Italy
Wlodek Drabent IPI PAN Warszawa, Poland
Gregory Duck National University of Singapore, Singapore
Maurizio Gabbrielli University of Bologna, Italy
Juergen Giesl RWTH Aachen University, Germany
Michael Hanus CAU Kiel, Germany
Salvador Lucas Universitat Politècnica de València, Spain
Fred Mesnard Université de La Réunion, France
Etienne Payet Université de La Réunion, France
Alberto Pettorossi Università di Roma Tor Vergata, Italy
Vitor Santos Costa University of Porto, Portugal
Tom Schrijvers Katholieke Universiteit Leuven, Belgium
Julien Signoles CEA LIST, France
Harald Sondergaard The University of Melbourne, Australia
Fausto Spoto University of Verona, Italy
Peter Stuckey The University of Melbourne, Australia
Markus Triska Vienna University of Technology, Austria
Wim Vanhoof University of Namur, Belgium
German Vidal Universitat Politècnica de València, Spain

Additional Reviewers

Gomez-Zamalloa, Miguel
Gordillo, Pablo
Maurica, Fonenantsoa
Schubert, Aleksy

Villanueva, Alicia
Yamada, Akihisa
Yoshimizu, Akira

Abstracts of Invited Talks

Formal Methods for JavaScript

Philippa Gardner

Imperial College London, UK
pg@doc.ic.ac.uk

Abstract. We present a novel, unified approach to the development of com-
positional symbolic execution tools, which bridges the gap between traditional
symbolic execution and compositional program reasoning based on separation
logic. We apply our approach to JavaScript, providing support for full verifi-
cation, whole-program symbolic testing, and automatic compositional testing
based on bi-abduction.

Constrained Horn Clauses for Verification

Jorge Navas

SRI International, USA
Jorge.Navas@sri.com

Abstract. Developing scalable software verification tools is a very difficult task.
First, due to the undecidability of the verification problem, these tools, must be
highly tuned and engineered to provide reasonable efficiency and precision
trade-offs. Second, different programming languages come with very diverse
assortments of syntactic and semantic features. Third, the diverse encoding
of the verification problem makes the integration with other powerful solvers
and verifiers difficult. This talk presents SeaHorn – an open source automated
Constrained Horn clause-based reasoning framework. SeaHorn combines
advanced automated solving techniques based on Satisfiability Modulo Theory
(SMT) and Abstract Interpretation. SeaHorn is built on top of LLVM using its
front-end(s) to deal with the idiosyncrasies of the syntax and it highly benefits
from LLVM optimizations to reduce the verification effort. SeaHorn uses
Constrained Horn clauses (CHC) which are a uniform way to formally represent
a broad variety of transition systems while allowing many encoding styles of
verification conditions. Moreover, the recent popularity of CHC as an inter-
mediate language for verification engines makes it possible to interface SeaHorn
with a variety of new and emerging tools. All of these features make SeaHorn a
versatile and highly customizable tool which allows researchers to easily build
or experiment with new verification techniques.

Experiences in Designing Scalable Static
Analyses

Laure Gonnord

University of Lyon 1, France
Laure.Gonnord@univ-lyon1.fr

Abstract. Proving the absence of bugs in a given software (problem which has
been known to be intrinsically hard since Turing and Cook) is not the only
challenge in software development. Indeed, the ever growing complexity of
software increases the need for more trustable optimisations. Solving these two
problems (reliability, optimisation) implies the development of safe (without
false negative answers) and efficient (wrt memory and time) analyses, yet pre-
cise enough (with few false positive answers). In this talk I will present some
experiences in the design of scalable static analyses inside compilers, and try to
make a synthesis about the general framework we, together with my coauthors,
used to develop them. I will also show some experimental evidence of the
impact of this work on real-world compilers, as well as future perspective for
this area of research.

Abstracts of Invited Tutorials

The VeriMAP System for Program
Transformation and Verification

Fabio Fioravanti

University of Chieti-Pescara, Italy
fioravanti@unich.it

Abstract. Constrained Horn Clauses (CHC) are becoming very popular for
representing programs and verification problems, and several tools have been
developed for checking their satisfiability. In this tutorial we will survey recent
work on satisfiability-preserving transformation techniques for CHC and we will
show how the VeriMAP system can be used effectively to (i) generate CHC
verification conditions from the programming language semantics, (ii) prove
safety properties of imperative programs manipulating integers and arrays,
(iii) prove relational program properties, such as program equivalence and
non-interference, (iv) check the satisfiability of CHC with inductively-defined
data structures (e.g. lists and trees), (v) prove safety and controllability prop-
erties of time-aware business processes.

25 Years of Ciao

Manuel Hermenegildo

IMDEA Software Institute and Technical University of Madrid, Spain
herme@fi.upm.es

Abstract. Ciao is a logic-based, multi-paradigm programming language which
has pioneered over the years many interesting language- and programming
environment-related concepts. An example is the notion of programming lan-
guages as modular language-building tools rather than closed designs. Another
is the idea of dynamic languages that can optionally and gradually offer formal
guarantees, which is also a solution for the classic dichotomy between dynamic
and static typing: Ciao has many dynamic features (e.g., dynamically typed,
dynamic program modification) but includes an assertion language for (op-
tionally) declaring program properties and powerful tools for static inference
and static/dynamic checking of such assertions, testing, documentation, etc. We
will provide a hands-on overview of these features, concentrating on the novel
aspects, the motivations behind their design and implementation, their evolution
over time, and, specially, their use. In particular, we will show how the system
can be used not only as a programming tool and as a language design tool, but
also as a general-purpose program analysis and verification tool, based on the
technique of translating program semantics (ranging from source to bytecode,
LLVM, or assembly) into Horn-clause representation, and idea which Ciao also
introduced early on. Finally, we will present some recent work in areas such as
scalability, incrementality, or static vs. dynamic costs, as well as some future
plans and ideas.

Contents

Analysis of Term Rewriting

Proving Program Properties as First-Order Satisfiability 3
Salvador Lucas

Guided Unfoldings for Finding Loops in Standard Term Rewriting 22
Étienne Payet

Homeomorphic Embedding Modulo Combinations of Associativity
and Commutativity Axioms . 38

María Alpuente, Angel Cuenca-Ortega, Santiago Escobar,
and José Meseguer

Logic-Based Distributed/Concurrent Programming

Multiparty Classical Choreographies . 59
Marco Carbone, Luís Cruz-Filipe, Fabrizio Montesi,
and Agata Murawska

A Pragmatic, Scalable Approach to Correct-by-Construction Process
Composition Using Classical Linear Logic Inference 77

Petros Papapanagiotou and Jacques Fleuriot

Confluence of CHR Revisited: Invariants and Modulo Equivalence 94
Henning Christiansen and Maja H. Kirkeby

Analysis of Logic Programming

Compiling Control as Offline Partial Deduction . 115
Vincent Nys and Danny De Schreye

Predicate Specialization for Definitional Higher-Order Logic Programs 132
Antonis Troumpoukis and Angelos Charalambidis

An Assertion Language for Slicing Constraint Logic Languages 148
Moreno Falaschi and Carlos Olarte

Program Analysis

Eliminating Unstable Tests in Floating-Point Programs 169
Laura Titolo, César A. Muñoz, Marco A. Feliú,
and Mariano M. Moscato

Multivariant Assertion-Based Guidance in Abstract Interpretation 184
Isabel Garcia-Contreras, Jose F. Morales, and Manuel V. Hermenegildo

Author Index . 203

XX Contents

	Preface
	Organization
	Abstracts of Invited Talks
	Formal Methods for JavaScript
	Constrained Horn Clauses for Verification
	Experiences in Designing Scalable Static Analyses
	Abstracts of Invited Tutorials
	The VeriMAP System for Program Transformation and Verification
	25 Years of Ciao
	Contents

