Skip to main content

Automatic Vertebra Labeling in Large-Scale Medical Images Using Deep Image-to-Image Network with Message Passing and Sparsity Regularization

  • Chapter
  • First Online:
Book cover Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

Abstract

Efficient and accurate vertebra labeling in medical images is important for longitudinal assessment, pathological diagnosis, and clinical treatment of the spinal diseases. In practice, the abnormal conditions in the images increase the difficulties to accurately identify the vertebrae locations. Such conditions include uncommon spinal curvature, bright imaging artifacts caused by metal implants, and limited field of the imaging view, etc. In this chapter, we propose an automatic vertebra localization and labeling method with high accuracy and efficiency for medical images. First, we introduce a deep image-to-image network (DI2IN) which generates the probability maps for vertebral centroids. The DI2IN adopts multiple prevailing techniques, including feature concatenation and deep supervision, to boost its performance. Second, a message-passing scheme is used to evolve the probability maps from DI2IN within multiple iterations, according to the spatial relationship of vertebrae. Finally, the locations of vertebra are refined and constrained with a learned sparse representation. We evaluate the proposed method on two categories of public databases, 3D CT volumes, and 2D X-ray scans, under various pathologies. The experimental results show that our method outperforms other state-of-the-art methods in terms of localization accuracy. In order to further boost the performance, we add 1000 extra 3D CT volumes with expert annotation when training the DI2IN for CT images. The results justify that large databases can improve the generalization capability and the performance of the deep neural networks. To the best of our knowledge, it is the first time that more than 1000 3D CT volumes are utilized for the anatomical landmark detection and the overall identification rate reaches 90% in spine labeling.

Dong Yang and Tao Xiong contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badrinarayanan V, Kendall A, Cipolla R (2015) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv:1511.00561

  2. Benameur S, Mignotte M, Parent S, Labelle H, Skalli W, de Guise J (2003) 3d/2d registration and segmentation of scoliotic vertebrae using statistical models. Comput Med Imaging Graph 27(5):321–337

    Article  Google Scholar 

  3. Boisvert J, Cheriet F, Pennec X, Labelle H, Ayache N (2008) Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans Med Imaging 27(4):557–568

    Article  Google Scholar 

  4. Chen H, Shen C, Qin J, Ni D, Shi L, Cheng JC, Heng PA (2015) Automatic localization and identification of vertebrae in spine ct via a joint learning model with deep neural networks. In: International conference on medical image computing and computer-assisted intervention, pp 515–522. Springer International Publishing

    Google Scholar 

  5. Chu X, Ouyang W, Li H, Wang X (2016) Structured feature learning for pose estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4715–4723

    Google Scholar 

  6. Demner-Fushman D, Kohli MD, Rosenman MB, Shooshan SE, Rodriguez L, Antani S, Thoma GR, McDonald CJ (2015) Preparing a collection of radiology examinations for distribution and retrieval. J Am Med Inform Assoc 23(2):304–310

    Article  Google Scholar 

  7. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148

    Article  Google Scholar 

  8. Glocker B, Feulner J, Criminisi A, Haynor D, Konukoglu E (2012) Automatic localization and identification of vertebrae in arbitrary field-of-view ct scans. In: Medical image computing and computer-assisted intervention-MICCAI, pp 590–598

    Chapter  Google Scholar 

  9. Glocker B, Zikic D, Konukoglu E, Haynor DR, Criminisi A (2013) Vertebrae localization in pathological spine ct via dense classification from sparse annotations. In: International conference on medical image computing and computer-assisted intervention, pp 262–270. Springer

    Google Scholar 

  10. Jaeger S, Candemir S, Antani S, Wáng YXJ, Lu PX, Thoma G (2014) Two public chest x-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg 4(6):475–477

    Google Scholar 

  11. Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in ct images. Med Image Anal 13(3):471–482

    Article  Google Scholar 

  12. Komodakis N, Paragios N, Tziritas G (2007) Mrf optimization via dual decomposition: message-passing revisited. In: 2007 IEEE 11th international conference on computer vision, ICCV 2007, pp 1–8. IEEE

    Google Scholar 

  13. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

    Google Scholar 

  14. Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp 565–571. IEEE

    Google Scholar 

  15. Nowozin S, Lampert CH et al (2011) Structured learning and prediction in computer vision. Foundations and Trends® in Computer Graphics and Vision 6(3–4):185–365

    Article  Google Scholar 

  16. Payer C, Stern D, Bischof H, Urschler M (2016) Regressing heatmaps for multiple landmark localization using cnns. In: MICCAI 2, pp 230–238

    Google Scholar 

  17. Roberts M, Cootes T, Adams J (2005) Vertebral shape: automatic measurement with dynamically sequenced active appearance models. In: Medical image computing and computer-assisted intervention-MICCAI 2005, pp 733–740

    Google Scholar 

  18. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp. 234–241. Springer

    Google Scholar 

  19. Ross S, Munoz D, Hebert M, Bagnell JA (2011) Learning message-passing inference machines for structured prediction. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR), pp 2737–2744. IEEE

    Google Scholar 

  20. Rubinstein R, Bruckstein AM, Elad M (2010) Dictionaries for sparse representation modeling. Proc IEEE 98(6):1045–1057

    Article  Google Scholar 

  21. Schmidt S, Kappes J, Bergtholdt M, Pekar V, Dries S, Bystrov D, Schnörr C (2007) Spine detection and labeling using a parts-based graphical model. In: Information processing in medical imaging, pp 122–133. Springer

    Google Scholar 

  22. Schwarzenbach O, Berlemann U, Jost B, Visarius H, Arm E, Langlotz F, Nolte LP, Ozdoba C (1997) Accuracy of computer-assisted pedicle screw placement: an in vivo computed tomography analysis. Spine 22(4):452–458

    Article  Google Scholar 

  23. Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu KI., Matsui M, Fujita H, Kodera Y, Doi K (2000) Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am J Roentgenol 174(1):71–74

    Article  Google Scholar 

  24. Sun H, Zhen X, Bailey C, Rasoulinejad P, Yin Y, Li S (2017) Direct estimation of spinal cobb angles by structured multi-output regression. In: International conference on information processing in medical imaging, pp 529–540. Springer

    Google Scholar 

  25. Suzani A, Seitel A, Liu Y, Fels S, Rohling RN, Abolmaesumi P (2015) Fast automatic vertebrae detection and localization in pathological ct scans-a deep learning approach. In: International conference on medical image computing and computer-assisted intervention, pp 678–686. Springer

    Google Scholar 

  26. Tomazevic D, Likar B, Slivnik T, Pernus F (2003) 3-d/2-d registration of ct and mr to x-ray images. IEEE Trans Med Imaging 22(11):1407–1416

    Article  Google Scholar 

  27. Wainwright MJ, Jordan MI et al (2008) Graphical models, exponential families, and variational inference. Foundations and Trends® in Machine Learning 1(1–2):1–305

    Article  Google Scholar 

  28. Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044

    Article  Google Scholar 

  29. Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1395–1403

    Google Scholar 

  30. Yang D, Xiong T, Xu D, Huang Q, Liu D, Zhou SK, Xu Z, Park J, Chen M, Tran TD et al (2017) Automatic vertebra labeling in large-scale 3d ct using deep image-to-image network with message passing and sparsity regularization. In: International conference on information processing in medical imaging, pp 633–644. Springer

    Google Scholar 

  31. Yang W, Ouyang W, Li H, Wang X (2016) End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3073–3082

    Google Scholar 

  32. Yao J, Burns JE, Forsberg D, Seitel A, Rasoulian A, Abolmaesumi P, Hammernik K, Urschler M, Ibragimov B, Korez R et al (2016) A multi-center milestone study of clinical vertebral ct segmentation. Comput Med Imaging Graph 49:16–28

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. David Liu, Dr. Kevin Zhou, and Dr. Mingqing Chen who provided insight and expertise that greatly assisted this research. We acknowledge the data which has been provided by the Department of Radiology at University of Washington.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Yang , Tao Xiong or Daguang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, D., Xiong, T., Xu, D. (2019). Automatic Vertebra Labeling in Large-Scale Medical Images Using Deep Image-to-Image Network with Message Passing and Sparsity Regularization. In: Lu, L., Wang, X., Carneiro, G., Yang, L. (eds) Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-13969-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13969-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13968-1

  • Online ISBN: 978-3-030-13969-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics