Skip to main content

An Efficient Deep Convolutional Neural Network for Visual Image Classification

  • Conference paper
  • First Online:
The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019) (AMLTA 2019)

Abstract

Such a hot open issue in the area of computer vision is the classification of visual images especially in Internet of Things (IoT) and remote mid-band and high-band based connections. In this paper, we propose a robust and efficient taxonomy framework. The proposed model utilizes the well-known convolutional neural network composites to construct a robust Visual Image Classification Network (VICNet). The VICNet consists of three convolutional layers, four Relu/Leaky Relu activation layers, three max-pooling layers and only two fully connected layers for extracting expected input image features. To make the training process faster, we used non-saturating neurons with a very efficient Graphics Processing Unit (GPU) implementation for the convolution operation. To minimize over-fitting issue in the fully-connected layers, we utilized a recently-developed regularization approach “dropout” with a dropping probability of 50%. The proposed VICNet framework has a high potential capability in the recognition of test images. The experimental and simulations results proven the efficacy of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, J.-G., Jun, S., Cho, Y.-W., Lee, H., Kim, G.B., Seo, J.B., Kim, N.: Deep learning in medical imaging general overview. Korean J. Radiol. 18(4), 570–584 (2017)

    Article  Google Scholar 

  2. Ahmed, M.A.O., Didaci, L., Lavi, B., Fumera, G.: Using diversity for classifier ensemble pruning: an empirical investigation. Theor. Appl. Inform. 29(1&2), 25–39 (2018)

    Article  Google Scholar 

  3. Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in machine learning: a new perspective. Neurocomputing 300, 70–79 (2018)

    Article  Google Scholar 

  4. Zhang, T., El-Latif, A.A.A., Wang, N., Li, Q., Niu, X.: A new image segmentation method via fusing NCut eigenvectors maps. In: Proceedings of SPIE 8334, Fourth International Conference on Digital Image Processing (ICDIP 2012), p. 833430 (2012)

    Google Scholar 

  5. Bai, X., Zhang, T., Wang, C., El-Latif, A.A.A., Niu, X.: A fully automatic player detection method based on one-class SVM. IEICE Trans. Inf. Syst. 96(2), 387–391 (2013)

    Article  Google Scholar 

  6. Shi, Z., Yu, L., El-Latif, A.A.A., Niu, X.: Skeleton modulated topological perception map for rapid viewpoint selection. IEICE Trans. Inf. Syst. 95(10), 2585–2588 (2012)

    Article  Google Scholar 

  7. Khfagy, M., AbdelSatar, Y., Reyad, O., Omran, N.: An integrated smoothing method for fingerprint recognition enhancement. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 407–416. Springer, Cham (2016)

    Google Scholar 

  8. Ahmed, M.A.O., Reyad, O., AbdelSatar, Y., Omran, N.F.: Multi-filter score-level fusion for fingerprint verification. In: International Conference on Advanced Machine Learning Technologies and Applications, pp. 624–633. Springer, Cham (2018)

    Google Scholar 

  9. El-Sayed, M.A., Khafagy, M.A.: An identification system using eye detection based on wavelets and neural networks. arXiv preprint arXiv:1401.5108 (2014)

  10. Nife, F., Kotulski, Z., Reyad, O.: New SDN-oriented distributed network security system. Appl. Math. Inf. Sci. 12(4), 673–683 (2018)

    Article  Google Scholar 

  11. Gad, R., Talha, M., El-Latif, A.A.A., Zorkany, M., El-Sayed, A., El-Fishawy, N., Muhammad, G.: Iris recognition using multi-algorithmic approaches for cognitive internet of things (CIoT) framework. Future Gener. Comput. Syst. 89, 178–191 (2018)

    Article  Google Scholar 

  12. Peng, J., El-Latif, A.A.A., Belazi, A., Kotulski, Z.: Efficient chaotic nonlinear component for secure cryptosystems. In: Ninth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 989–993. IEEE (2017)

    Google Scholar 

  13. Shiddieqy, H.A., Hariadi, F.I., Adiono, T.: Implementation of deep-learning based image classification on single board computer. In: 2017 International Symposium on Electronics and Smart Devices (ISESD), pp. 133–137. IEEE (2017)

    Google Scholar 

  14. Liu, R., Yang, B., Zio, E., Chen, X.: Artificial intelligence for fault diagnosis of rotating machinery: a review. Mech. Syst. Sig. Process. 108, 33–47 (2018)

    Article  Google Scholar 

  15. Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D.I., Wang, G., Rosen, Z.E., Gray, R., Doel, T., Hu, Y., Whyntie, T., Nachevc, P., Modat, M., Barratta, D.C., Ourselin, S., Cardoso, M.J., Vercauteren, T.: NiftyNet: a deep-learning platform for medical imaging. Comput. Methods Programs Biomed. 158, 113–122 (2018)

    Article  Google Scholar 

  16. Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H.: Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 12 (2015)

    Article  Google Scholar 

  17. El-Sayed, M.A., Estaitia, Y.A., Khafagy, M.A.: Automated edge detection using convolutional neural network. Int. J. Adv. Comput. Sci. Appl. 4(10), 10–20 (2013)

    Google Scholar 

  18. Lavi, B., Ahmed, M.A.O.: Interactive fuzzy cellular automata for fast person re-identification. In: The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), pp. 147–157. Springer, Cham (2018)

    Google Scholar 

  19. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  20. Li, J., Zhang, B., Lu, G., Zhang, D.: Generative multi-view and multi-feature learning for classification. Inf. Fusion 45, 215–226 (2019)

    Article  Google Scholar 

  21. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  22. Ahmed, M.A.O.: Trained neural networks ensembles weight connections analysis. In: International Conference on Advanced Machine Learning Technologies and Applications, pp. 242–251. Springer, Cham (2018)

    Google Scholar 

  23. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, pp. 1–9, (2015). IEEE

    Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, California, USA, pp. 1097–105 (2012)

    Google Scholar 

  25. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778, (2016)

    Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015, 2017). https://arxiv.org/pdf/1409.1556v6.pdf

  27. Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.-F.: Stanford dogs dataset (2011). http://vision.stanford.edu/aditya86/ImageNetDogs

  28. Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.-F.: Novel dataset for fine-grained image categorization. In: First Workshop on Fine-Grained Visual Categorization, IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, June 2011

    Google Scholar 

  29. MATLAB: Statistics and Machine Learning Toolbox. The mathworks (2018)

    Google Scholar 

  30. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

    Article  Google Scholar 

  31. Khfagy, M.A.O.A.: Visual image classification convolutional network (VICNET) (2019). https://github.com/mkhfagy/VICNet

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Atta Othman Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Rahiem, B.A., Ahmed, M.A.O., Reyad, O., El-Rahaman, H.A., Amin, M., El-Samie, F.A. (2020). An Efficient Deep Convolutional Neural Network for Visual Image Classification. In: Hassanien, A., Azar, A., Gaber, T., Bhatnagar, R., F. Tolba, M. (eds) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019). AMLTA 2019. Advances in Intelligent Systems and Computing, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-030-14118-9_3

Download citation

Publish with us

Policies and ethics