Skip to main content

Haplotype and Repeat Separation in Long Reads

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10834))

Abstract

Resolving the correct structure and succession of highly similar sequence stretches is one of the main open problems in genome assembly. For non haploid genomes this includes determining the sequences of the different haplotypes. For all but the smallest genomes it also involves separating different repeat instances. In this paper we discuss methods for resolving such problems in third generation long reads by classifying alignments between long reads according to whether they represent true or false read overlaps. The main problem in this context is the high error rate found in such reads, which greatly exceeds the variance between the similar regions we want to separate. Our methods can separate read classes stemming from regions with as little as \(1\%\) difference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Myers, G.: Efficient local alignment discovery amongst noisy long reads. In: Brown, D., Morgenstern, B. (eds.) WABI 2014. LNCS, vol. 8701, pp. 52–67. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44753-6_5

    Chapter  Google Scholar 

  2. Tischler, G., Myers, E.W.: Non hybrid long read consensus using local de bruijn graph assembly. bioRxiv (2017). https://www.biorxiv.org/content/early/2017/02/06/106252

  3. Patterson, M., Marschall, T., Pisanti, N., van Iersel, L., Stougie, L., Klau, G.W., Schönhuth, A.: WhatsHap: haplotype assembly for future-generation sequencing reads. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol. 8394, pp. 237–249. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05269-4_19

    Chapter  Google Scholar 

  4. Murray, P., et al.: Whatshap: weighted haplotype assembly for future-generation sequencing reads. J. Comput. Biol. 22(6), 498–509 (2015). https://doi.org/10.1089/cmb.2014.0157. pMID: 25658651

    Article  Google Scholar 

  5. Martin, M., et al.: Whatshap: fast and accurate read-based phasing. bioRxiv (2016). https://www.biorxiv.org/content/early/2016/11/14/085050

  6. Bansal, V., Halpern, A.L., Axelrod, N., Bafna, V.: An MCMC algorithm for haplotype assembly from whole-genome sequence data. Genome Res. 18(8), 1336–1346 (2008). http://genome.cshlp.org/content/18/8/1336.abstract

    Article  Google Scholar 

  7. Bansal, V., Bafna, V.: Hapcut: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics 24(16), i153–i159 (2008). https://doi.org/10.1093/bioinformatics/btn298

    Article  Google Scholar 

  8. Mazrouee, S., Wang, W.: Fasthap: fast and accurate single individual haplotype reconstruction using fuzzy conflict graphs. Bioinformatics 30(17), i371–i378 (2014). btu442[PII], http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147895/

    Article  Google Scholar 

  9. Deng, F., Cui, W., Wang, L.: A highly accurate heuristic algorithm for the haplotype assembly problem. BMC Genomics 14(2), S2 (2013). https://doi.org/10.1186/1471-2164-14-S2-S2

    Article  Google Scholar 

  10. Chin, C.S., et al.: Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050 EP (2016). https://doi.org/10.1038/nmeth.4035. article

    Article  Google Scholar 

  11. Chaisson, M.J., Mukherjee, S., Kannan, S., Eichler, E.E.: Resolving multicopy duplications de novo using polyploid phasing. In: Sahinalp, S.C. (ed.) RECOMB 2017. LNCS, vol. 10229, pp. 117–133. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56970-3_8

    Chapter  Google Scholar 

  12. Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., Phillippy, A.M.: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27(5), 722–736 (2017). http://genome.cshlp.org/content/27/5/722.abstract

    Article  Google Scholar 

  13. Carneiro, M.O., Russ, C., Ross, M.G., Gabriel, S.B., Nusbaum, C., DePristo, M.A.: Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics 13(1), 375 (2012). https://doi.org/10.1186/1471-2164-13-375

    Article  Google Scholar 

  14. Escalona, M., Rocha, S., Posada, D.: A comparison of tools for the simulation of genomic next-generation sequencing data. Nat. Rev. Genet. 17(8), 459–469 (2016). 27320129[pmid]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224698/

    Article  Google Scholar 

  15. Ono, Y., Asai, K., Hamada, M.: Pbsim: Pacbio reads simulator-toward accurate genome assembly. Bioinformatics 29(1), 119–121 (2013). https://doi.org/10.1093/bioinformatics/bts649

    Article  Google Scholar 

  16. Garrison, E., Marth, G.: Haplotype-based variant detection from short-read sequencing. ArXiv e-prints (2012)

    Google Scholar 

Download references

Acknowledgments

We thank Gene Myers for interesting algorithmical discussions related to this paper and Shilpa Garg for advice on running WhatsHap.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to German Tischler-Höhle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tischler-Höhle, G. (2019). Haplotype and Repeat Separation in Long Reads. In: Bartoletti, M., et al. Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2017. Lecture Notes in Computer Science(), vol 10834. Springer, Cham. https://doi.org/10.1007/978-3-030-14160-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14160-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14159-2

  • Online ISBN: 978-3-030-14160-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics