Abstract
In this paper, we show a simulation scenario of a short section of a blood vessel, in which white blood cells, red blood cells, and platelets move as a consequence of collisions and the Hagen–Poiseuille law. In addition to these cells, we have considered also the presence of circulating tumor cells (CTC) and of a receiver node that is able to detect the presence of CTC by using its surface receptors which are affine to the ligands present on the CTC surface.
This study aims at identifying potential optimal positions of CTC sensors within blood vessels in order to maximize the probability of a successful detection.
A simulation campaign has been performed by the BiNS2 simulation framework for several distances of the receiver node from the vessel axis. Obtained results show that CTCs tend to move towards the endothelium.
Supported by the EU project H2020 FET Open CIRCLE (Coordinating European Research on Molecular Communications, project No. 665564) and by the MolML project funded by University of Perugia.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akyildiz, I.F., Jornet, J.M.: The internet of nano-things. Wirel. Commun. 17(6), 58–63 (2010). https://doi.org/10.1109/MWC.2010.5675779
Alarcon, E., et al.: MolComML: the molecular communication markup language. In: Proceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication, NANOCOM 2016, pp. 16:1–16:6. ACM, New York (2016). http://doi.acm.org/10.1145/2967446.2967460
Allard, W.J., et al.: Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10(20), 6897–6904 (2004)
Alunni-Fabbroni, M., Sandri, M.T.: Circulating tumour cells in clinical practice: methods of detection and possible characterization. Methods 50(4), 289–297 (2010)
Atakan, B., Akan, O., Balasubramaniam, S.: Body area nanonetworks with molecular communications in nanomedicine. IEEE Commun. Mag. 50(1), 28–34 (2012). https://doi.org/10.1109/MCOM.2012.6122529
Bordon, Y.: Cracking the combination. Nature Rev. 12 (2013). https://doi.org/10.1038/nri3481
Dong, Y., et al.: Microuidics and circulating tumor cells. J. Mol. Diagn. 15(2), 149–157 (2013). https://doi.org/10.1016/j.jmoldx.2012.09.004. http://www.sciencedirect.com/science/article/pii/S1525157812003078
El Andaloussi, S., Mäger, I., Breakefield, X.O., Wood, M.J.A.: Extracellular vesicles: biology and emerging therapeutic opportunities. Nature Rev. Drug Disc. 12, 347 EP (2013). https://doi.org/10.1038/nrd3978, perspective
Felicetti, L., Femminella, M., Reali, G.: A simulation tool for nanoscale biological networks. Nano Commun. Netw. 3(1), 2–18 (2012)
Felicetti, L., Femminella, M., Reali, G.: Simulation of molecular signaling in blood vessels: software design and application to atherogenesis. Nano Commun. Netw. 4(3), 98–119 (2013)
Felicetti, L., Femminella, M., Reali, G., Gresele, P., Malvestiti, M.: Simulating an in vitro experiment on nanoscale communications by using BiNS2. Nano Commun. Netw. 4(4), 172–180 (2013)
Fu, Y., et al.: Circulating microRNA-101 as a potential biomarker for hepatitis B virusrelated hepatocellular carcinoma. Oncol. Lett. 6(6), 1811–1815 (2013). https://doi.org/10.1038/nri3481
Gidaspow, D., Huang, J.: Kinetic theory based model for blood flow and its viscosity. Ann. Biomed. Eng. 37(8), 1534–1545 (2009)
Grunnet, M., Sørensen, J.: Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer 76, 138–143 (2011)
Guney, A., Atakan, B., Akan, O.: Mobile ad hoc nanonetworks with collision-based molecular communication. IEEE Trans. Mob. Comput. 11(3), 353–366 (2012). https://doi.org/10.1109/TMC.2011.53
Haber, D.A., Velculescu, V.E.: Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov. 4(6), 650–661 (2014)
Han, S.S., et al.: Plasma osteopontin is a useful diagnostic biomarker for advanced non-small cell lung cancer. Tuberc. Respir. Dis. 75(3), 104–110 (2013)
Harima, Y., et al.: Apolipoprotein C-II is a potential serum biomarker as a prognostic factor of locally advanced cervical cancer after chemoradiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 87, 1155–1161 (2013)
Hsieh, H.B., et al.: High speed detection of circulating tumor cells. Biosens. Bioelectron. 21(10), 1893–1899 (2006)
Huang, A.F., Chen, E., Huang, S.M., Kao, C.L., Lai, H.C., Chan, J.Y.-H.: CD164 regulates the tumorigenesis of ovarian surface epithelial cells through the SDF-1/CXCR4 axis. Mol. Cancer 12, 115 (2013)
Kowalik, A., Kowalewska, M., Gozdz, S.: Current approaches for avoiding the limitations of circulating tumor cells detection methods-implications for diagnosis and treatment of patients with solid tumors. Transl. Res. 185, 58–84 (2017)
Nakano, T., Moore, M., Wei, F., Vasilakos, A., Shuai, J.: Molecular communication and networking: opportunities and challenges. IEEE Trans. Nanobiosci. 11(2), 135–148 (2012). https://doi.org/10.1109/TNB.2012.2191570
Pan, W., Caswell, B., Karniadakis, G.E.: A low-dimensional model for the red blood cell. Soft Matter 6(18), 4366–4376 (2010)
Phillips, K.G., et al.: Optical quantification of cellular mass, volume, and density of circulating tumor cells identified in an ovarian cancer patient. Front. Oncol. 2, 72 (2012)
Pierobon, M., Akyildiz, I.F.: Diffusion-based noise analysis for molecular communication in nanonetworks. IEEE Trans. Signal Process. 59(6), 2532–2547 (2011). https://doi.org/10.1109/TSP.2011.2114656
Shin, S., et al.: Unexpected gain of function for the scaffolding protein plectin due to mislocalization in pancreatic cancer. Proc. Natl. Acad. Sci. 110, 19414–19419 (2013)
Tan, J., Thomas, A., Liu, Y.: Influence of red blood cells on nanoparticle targeted delivery in microcirculation. Soft Matter 8, 1934–1946 (2012)
Unanue, E.R.: Perspectives on anti-cd47 antibody treatment for experimental cancer. Proc. Nat. Acad. Sci. 110(27), 10886–10887 (2013). https://doi.org/10.1073/pnas.1308463110. http://www.pnas.org/content/110/27/10886
Weiskopf, K., et al.: Engineered SIRP variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341, 88–91 (2013)
Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., Benenson, Y.: Multiinput RNAi-based logic circuit for identification of specific cancer cells. Science 333(6047), 1307–1311 (2011). https://doi.org/10.1126/science.1205527. http://science.sciencemag.org/content/333/6047/1307
Yu, M., Stott, S., Toner, M., Maheswaran, S., Haber, D.A.: Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 192(3), 373–382 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Felicetti, L., Femminella, M., Reali, G. (2019). A Nano Communication System for CTC Detection in Blood Vessels. In: Bartoletti, M., et al. Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2017. Lecture Notes in Computer Science(), vol 10834. Springer, Cham. https://doi.org/10.1007/978-3-030-14160-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-14160-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-14159-2
Online ISBN: 978-3-030-14160-8
eBook Packages: Computer ScienceComputer Science (R0)