Skip to main content

A Nano Communication System for CTC Detection in Blood Vessels

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2017)

Abstract

In this paper, we show a simulation scenario of a short section of a blood vessel, in which white blood cells, red blood cells, and platelets move as a consequence of collisions and the Hagen–Poiseuille law. In addition to these cells, we have considered also the presence of circulating tumor cells (CTC) and of a receiver node that is able to detect the presence of CTC by using its surface receptors which are affine to the ligands present on the CTC surface.

This study aims at identifying potential optimal positions of CTC sensors within blood vessels in order to maximize the probability of a successful detection.

A simulation campaign has been performed by the BiNS2 simulation framework for several distances of the receiver node from the vessel axis. Obtained results show that CTCs tend to move towards the endothelium.

Supported by the EU project H2020 FET Open CIRCLE (Coordinating European Research on Molecular Communications, project No. 665564) and by the MolML project funded by University of Perugia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyildiz, I.F., Jornet, J.M.: The internet of nano-things. Wirel. Commun. 17(6), 58–63 (2010). https://doi.org/10.1109/MWC.2010.5675779

    Article  Google Scholar 

  2. Alarcon, E., et al.: MolComML: the molecular communication markup language. In: Proceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication, NANOCOM 2016, pp. 16:1–16:6. ACM, New York (2016). http://doi.acm.org/10.1145/2967446.2967460

  3. Allard, W.J., et al.: Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10(20), 6897–6904 (2004)

    Article  Google Scholar 

  4. Alunni-Fabbroni, M., Sandri, M.T.: Circulating tumour cells in clinical practice: methods of detection and possible characterization. Methods 50(4), 289–297 (2010)

    Article  Google Scholar 

  5. Atakan, B., Akan, O., Balasubramaniam, S.: Body area nanonetworks with molecular communications in nanomedicine. IEEE Commun. Mag. 50(1), 28–34 (2012). https://doi.org/10.1109/MCOM.2012.6122529

    Article  Google Scholar 

  6. Bordon, Y.: Cracking the combination. Nature Rev. 12 (2013). https://doi.org/10.1038/nri3481

    Article  Google Scholar 

  7. Dong, Y., et al.: Microuidics and circulating tumor cells. J. Mol. Diagn. 15(2), 149–157 (2013). https://doi.org/10.1016/j.jmoldx.2012.09.004. http://www.sciencedirect.com/science/article/pii/S1525157812003078

    Article  Google Scholar 

  8. El Andaloussi, S., Mäger, I., Breakefield, X.O., Wood, M.J.A.: Extracellular vesicles: biology and emerging therapeutic opportunities. Nature Rev. Drug Disc. 12, 347 EP (2013). https://doi.org/10.1038/nrd3978, perspective

    Article  Google Scholar 

  9. Felicetti, L., Femminella, M., Reali, G.: A simulation tool for nanoscale biological networks. Nano Commun. Netw. 3(1), 2–18 (2012)

    Article  Google Scholar 

  10. Felicetti, L., Femminella, M., Reali, G.: Simulation of molecular signaling in blood vessels: software design and application to atherogenesis. Nano Commun. Netw. 4(3), 98–119 (2013)

    Article  Google Scholar 

  11. Felicetti, L., Femminella, M., Reali, G., Gresele, P., Malvestiti, M.: Simulating an in vitro experiment on nanoscale communications by using BiNS2. Nano Commun. Netw. 4(4), 172–180 (2013)

    Article  Google Scholar 

  12. Fu, Y., et al.: Circulating microRNA-101 as a potential biomarker for hepatitis B virusrelated hepatocellular carcinoma. Oncol. Lett. 6(6), 1811–1815 (2013). https://doi.org/10.1038/nri3481

    Article  Google Scholar 

  13. Gidaspow, D., Huang, J.: Kinetic theory based model for blood flow and its viscosity. Ann. Biomed. Eng. 37(8), 1534–1545 (2009)

    Article  Google Scholar 

  14. Grunnet, M., Sørensen, J.: Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer 76, 138–143 (2011)

    Article  Google Scholar 

  15. Guney, A., Atakan, B., Akan, O.: Mobile ad hoc nanonetworks with collision-based molecular communication. IEEE Trans. Mob. Comput. 11(3), 353–366 (2012). https://doi.org/10.1109/TMC.2011.53

    Article  Google Scholar 

  16. Haber, D.A., Velculescu, V.E.: Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov. 4(6), 650–661 (2014)

    Article  Google Scholar 

  17. Han, S.S., et al.: Plasma osteopontin is a useful diagnostic biomarker for advanced non-small cell lung cancer. Tuberc. Respir. Dis. 75(3), 104–110 (2013)

    Article  Google Scholar 

  18. Harima, Y., et al.: Apolipoprotein C-II is a potential serum biomarker as a prognostic factor of locally advanced cervical cancer after chemoradiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 87, 1155–1161 (2013)

    Article  Google Scholar 

  19. Hsieh, H.B., et al.: High speed detection of circulating tumor cells. Biosens. Bioelectron. 21(10), 1893–1899 (2006)

    Article  Google Scholar 

  20. Huang, A.F., Chen, E., Huang, S.M., Kao, C.L., Lai, H.C., Chan, J.Y.-H.: CD164 regulates the tumorigenesis of ovarian surface epithelial cells through the SDF-1/CXCR4 axis. Mol. Cancer 12, 115 (2013)

    Article  Google Scholar 

  21. Kowalik, A., Kowalewska, M., Gozdz, S.: Current approaches for avoiding the limitations of circulating tumor cells detection methods-implications for diagnosis and treatment of patients with solid tumors. Transl. Res. 185, 58–84 (2017)

    Article  Google Scholar 

  22. Nakano, T., Moore, M., Wei, F., Vasilakos, A., Shuai, J.: Molecular communication and networking: opportunities and challenges. IEEE Trans. Nanobiosci. 11(2), 135–148 (2012). https://doi.org/10.1109/TNB.2012.2191570

    Article  Google Scholar 

  23. Pan, W., Caswell, B., Karniadakis, G.E.: A low-dimensional model for the red blood cell. Soft Matter 6(18), 4366–4376 (2010)

    Article  Google Scholar 

  24. Phillips, K.G., et al.: Optical quantification of cellular mass, volume, and density of circulating tumor cells identified in an ovarian cancer patient. Front. Oncol. 2, 72 (2012)

    Google Scholar 

  25. Pierobon, M., Akyildiz, I.F.: Diffusion-based noise analysis for molecular communication in nanonetworks. IEEE Trans. Signal Process. 59(6), 2532–2547 (2011). https://doi.org/10.1109/TSP.2011.2114656

    Article  MathSciNet  MATH  Google Scholar 

  26. Shin, S., et al.: Unexpected gain of function for the scaffolding protein plectin due to mislocalization in pancreatic cancer. Proc. Natl. Acad. Sci. 110, 19414–19419 (2013)

    Article  Google Scholar 

  27. Tan, J., Thomas, A., Liu, Y.: Influence of red blood cells on nanoparticle targeted delivery in microcirculation. Soft Matter 8, 1934–1946 (2012)

    Article  Google Scholar 

  28. Unanue, E.R.: Perspectives on anti-cd47 antibody treatment for experimental cancer. Proc. Nat. Acad. Sci. 110(27), 10886–10887 (2013). https://doi.org/10.1073/pnas.1308463110. http://www.pnas.org/content/110/27/10886

    Article  Google Scholar 

  29. Weiskopf, K., et al.: Engineered SIRP variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341, 88–91 (2013)

    Article  Google Scholar 

  30. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., Benenson, Y.: Multiinput RNAi-based logic circuit for identification of specific cancer cells. Science 333(6047), 1307–1311 (2011). https://doi.org/10.1126/science.1205527. http://science.sciencemag.org/content/333/6047/1307

    Article  Google Scholar 

  31. Yu, M., Stott, S., Toner, M., Maheswaran, S., Haber, D.A.: Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 192(3), 373–382 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Femminella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Felicetti, L., Femminella, M., Reali, G. (2019). A Nano Communication System for CTC Detection in Blood Vessels. In: Bartoletti, M., et al. Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2017. Lecture Notes in Computer Science(), vol 10834. Springer, Cham. https://doi.org/10.1007/978-3-030-14160-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14160-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14159-2

  • Online ISBN: 978-3-030-14160-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics