Skip to main content

A Multi-client DSSE Scheme Supporting Range Queries

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11449))

Included in the following conference series:

Abstract

We consider the need for security while providing services that are comparable to that of traditional applications to fully exploit cloud services to its fullest potential. While Dynamic Searchable Symmetric Encryption (DSSE) supports such needs, we want to be able to protect against file-injection attacks. Hence, we require forward privacy and a scheme which allows for a wide range of searching capabilities. We propose an extension, based on the RSA problem, to a DSSE scheme that supports range queries allowing the scheme to also support multiple clients. Furthermore, we describe how we can further manage clients using Attribute-Based Encryption (ABE) such that clients cannot decrypt ciphertexts that fall outside of their access rights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., Curtmola, R., Dietrich, S., Kiayias, A., Miret, Josep M., Sako, K., Sebé, F. (eds.) FC 2010. LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14992-4_13

    Chapter  Google Scholar 

  2. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)

    Article  Google Scholar 

  3. Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmetric private information retrieval. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security 2013, pp. 875–888. ACM (2013)

    Google Scholar 

  4. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable searchable symmetric encryption with support for boolean queries. In: Canetti, R., Garay, Juan A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_20

    Chapter  Google Scholar 

  5. Zuo, C., Sun, S., Liu, J.K., Shao, J., Pieprzyk, J.: Dynamic searchable symmetric encryption schemes supporting range queries with forward (and backward) security. IACR Cryptology ePrint Archive, vol. 2018, p. 628 (2018)

    Google Scholar 

  6. Sun, S.-F., Liu, Joseph K., Sakzad, A., Steinfeld, R., Yuen, T.H.: An efficient non-interactive multi-client searchable encryption with support for boolean queries. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 154–172. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45744-4_8

    Chapter  Google Scholar 

  7. Dawn Xiaoding, S., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proceedings of 2000 IEEE Symposium on Security and Privacy. S&P 2000, pp. 44–55 (2000)

    Google Scholar 

  8. Cash, D., et al.: Dynamic Searchable Encryption in Very-Large Databases: Data Structures and Implementation. Citeseer (2014)

    Google Scholar 

  9. Deng, Z., Li, K., Li, K., Zhou, J.: A multi-user searchable encryption scheme with keyword authorization in a cloud storage. Future Gener. Comput. Syst. 72, 208–218 (2017)

    Article  Google Scholar 

  10. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M.-C., Steiner, M.: Rich queries on encrypted data: beyond exact matches. IACR Cryptology ePrint Archive, vol. 2015, p. 927 (2015)

    Google Scholar 

  11. Jiang, H., Li, X., Xu, Q.: An improvement to a multi-client searchable encryption scheme for boolean queries (in English). J. Med. Syst. 40(12), 1–11 (2016)

    Article  Google Scholar 

  12. Kasra Kermanshahi, S., Liu, Joseph K., Steinfeld, R.: Multi-user cloud-based secure keyword search. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 227–247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0_12

    Chapter  Google Scholar 

  13. Sun, L., Xu, C., Zhang, Y.: A dynamic and non-interactive boolean searchable symmetric encryption in multi-client setting. J. Inf. Secur. Appl. 40, 145–155 (2018)

    Google Scholar 

  14. Zuo, C., Macindoe, J., Yang, S., Steinfeld, R., Liu, J.K.: Trusted boolean search on cloud using searchable symmetric encryption. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 113–120 (2016)

    Google Scholar 

  15. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. In: NDSS, vol. 71, pp. 72–75 (2014)

    Google Scholar 

  16. Bost, R.: ∑ oφoς: forward secure searchable encryption. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1143–1154. ACM (2016)

    Google Scholar 

  17. Bost, R., Fouque, P.-A., Pointcheval, D.: Verifiable dynamic symmetric searchable encryption: optimality and forward security. IACR Cryptology ePrint Archive, vol. 2016, p. 62 (2016)

    Google Scholar 

  18. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  19. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007 IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334 (2007)

    Google Scholar 

  20. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Randolph Loh , Cong Zuo , Joseph K. Liu or Shi-Feng Sun .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 1.

For a one-way trapdoor permutation \( \varPi \), a PRF \( F \), random oracle hash functions \( H_{1} \) and \( H_{2} \) that outputs \( \mu \) and \( \lambda \) bits respectively.

$$ \begin{array}{*{20}c} {For,{\mathcal{L}}_{{{\text{MC}{-}}\Gamma _{\text{A}} }} = \left( {{\mathcal{L}}_{{{\text{MC}{-}}\Gamma _{\text{A}} }}^{\text{Srch}} ,{\mathcal{L}}_{{{\text{MC}{-}}\Gamma _{\text{A}} }}^{\text{Updt}} } \right)} \\ {s.t\,{\mathcal{L}}_{{{\text{MC}{-}}\Gamma _{\text{A}} }}^{\text{Srch}} \left( {\mathbf{n}} \right) = \left( {{\text{sp}}\left( {\mathbf{n}} \right),{\text{Hist}}\left( n \right),{\text{cp}}\left( n \right)} \right),} \\ {{\mathcal{L}}_{{{\text{MC}{-}}\Gamma _{\text{A}} }}^{\text{Updt}} \left( {add,n,ind} \right) = \bot } \\ \end{array} $$

where \( {\mathbf{n}} \) is a set of queried keywords s.t \( n \in {\mathbf{n}} \) . Then \( {\text{MC-}}\Gamma _{\text{A}} \) is \( {\mathcal{L}}_{{{\text{MC-}}\Gamma _{\text{A}} }} \) -adaptively-secure.

Proof.

Inherited from [5], we create a set of games, \( {\text{DSSEReal}}_{{\mathcal{A}}}^{{{\text{MC-}}\Gamma _{\text{A}} }} \left( {1^{\lambda } } \right) \) and \( {\text{DSSEIdeal}}_{{{\mathcal{A}},S}}^{{{\text{MC-}}\Gamma _{\text{A}} }} \left( {1^{\lambda } } \right). \)

Game \( \varvec{G}_{0} \). \( G_{0} \) is precisely portrays the real-world game \( {\text{DSSEReal}}_{{\mathcal{A}}}^{{{\text{MC-}}\Gamma _{\text{A}} }} \left( {1^{\lambda } } \right). \)

$$ \Pr \left[ {DSSEReal_{{\mathcal{A}}}^{{{\text{MC-}}\Gamma _{\text{A}} }} \left( {1^{\lambda } } \right) = 1} \right] = { \Pr }\left[ {G_{0} = 1} \right] $$

Game \( \varvec{G}_{1} \). In \( G_{1} \), a random key is select for an input of new keyword \( n \), instead of generating \( K_{n} \) through \( F \), removing the need to generate a client key, as such in Algorithm 2. The key is then stored in a table for later use. If an adversary \( {\mathcal{A}} \) can differentiate games \( G_{0} \) and \( G_{1} \), we can then make a reduction table to distinguish between \( F \) and a true random function. More formally, an efficient adversary \( B_{1} \) is made present s.t

$$ \Pr \left[ {G_{0} = 1} \right] - { \Pr }\left[ {G_{1} = 1} \right] \le Adv_{{F,B_{1} }}^{PRF} \left( {1^{\lambda } } \right) $$

Game \( \varvec{G}_{2} \), \( \varvec{ G}_{3} \). We replace hash functions \( H_{1} \) and \( H_{2} \) with random strings in \( G_{2} \) and \( G_{3} \) respectively. These games are as described in more detail in [5]. Where differentiating these games is depends on the hardness of the \( \varPi \), we conclude present an efficient adversary \( B_{2} \) s.t

$$ \Pr \left[ {G_{1} = 1} \right] - \Pr \left[ {G_{3} = 1} \right] \le 2N \cdot Adv_{{\varPi ,B_{2} }}^{OneWay} \left( {1^{\lambda } } \right) $$

where \( N \) is the number of times \( H_{1} \) and \( H_{2} \) ran.

Game \( \varvec{G}_{4} \). In \( G_{4} \), for the random generated encrypted strings of \( H_{1} \) and \( H_{2} \) that are stored, later reused in the search protocol for \( H_{1} \) and \( H_{2} \). Results in \( G_{4} \) to behave exactly like games \( G_{2} \) and \( G_{3} \) s.t

$$ \Pr \left[ {G_{4} = 1} \right] = \Pr \left[ {G_{2,3} = 1} \right] $$

Simulator \( \varvec{S} \). With respect to information leakage “contain pattern” (\( {\text{cp}} \)), an update token \( UT \) can be specifically reused to determine inclusive relationships between keywords. Consequently, the same can be done with “search pattern” (\( {\text{sp}} \)) “history” (\( {\text{Hist}} \)) to simulate the Search and Update operations. In Algorithm 3, we map range queries to a set of specified keywords \( {\mathbf{n}} \) s.t

$$ \Pr \left[ {G_{4} = 1} \right] = \Pr \left[ {{\text{DSSEIdeal}}_{{{\mathcal{A}},S}}^{{{\text{MC-}}\Gamma _{\text{A}} }} \left( {1^{\lambda } } \right) = 1} \right] $$

Finally,

$$ \begin{array}{*{20}r} \hfill {\Pr \left[ {{\text{DSSEReal}}_{{\mathcal{A}}}^{{{\text{MC-}}\Gamma _{\text{A}} }} \left( {1^{\lambda } } \right) } \right] - \Pr \left[ {{\text{DSSEIdeal}}_{{{\mathcal{A}},S}}^{{{\text{MC-}}\Gamma _{\text{A}} }} \left( {1^{\lambda } } \right) = 1} \right]} \\ \hfill { \le Adv_{{F,B_{1} }}^{PRF} \left( {1^{\lambda } } \right) + 2N \cdot Adv_{{\varPi ,B_{2} }}^{OneWay} \left( {1^{\lambda } } \right)} \\ \end{array} $$

completing the proof.

figure f
figure g

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loh, R., Zuo, C., Liu, J.K., Sun, SF. (2019). A Multi-client DSSE Scheme Supporting Range Queries. In: Guo, F., Huang, X., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2018. Lecture Notes in Computer Science(), vol 11449. Springer, Cham. https://doi.org/10.1007/978-3-030-14234-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14234-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14233-9

  • Online ISBN: 978-3-030-14234-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics