Abstract
Reducing the number of communication rounds of Password-based Authenticated Key Exchange (\(\textsf {PAKE} \)) protocols is of great practical significance. At PKC’15, Abdalla et al. relaxed the requirements of Gennaro-Lindell’s framework for three-round PAKE protocols, and obtained a two-round PAKE protocol under the traditional DDH-based smooth projective hash function (\(\mathsf {SPHF} \)). At ASIACRYPT’17, Zhang and Yu proposed a lattice-based two-round PAKE protocol via the approximate \(\mathsf {SPHF} \). However, the language of Zhang-Yu’s SPHF depends on simulation-sound non-interactive zero-knowledge (NIZK) proofs, for which there is no concrete construction without random oracle under lattice-based assumptions. To our knowledge, how to design a lattice-based two-round \(\textsf {PAKE} \) protocol via an efficient \(\mathsf {SPHF} \) scheme without NIZK remains a challenge. In this paper, we propose the first two-round \(\textsf {PAKE} \) protocol over lattices without NIZK. Our protocol is in accordance with the framework of Abdalla et al. (PKC’15) while attaining post-quantum security. We overcome the limitations of existing schemes by relaxing previous security assumptions (i.e., both the client and the sever need IND-CCA-secure encryption), and build two new lattice-based \(\mathsf {SPHF} \)s, one for IND-CCA-secure Micciancio-Peikert ciphertext (at the client side) and the other for IND-CPA-secure Regev ciphertext (at the server side). Particularly, our protocol attains provable security.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that every \(\text {IND-CCA}2\)-secure scheme is also an \(\text {IND-PCA}\)-secure scheme.
- 2.
The non-adaptive approximate \(\mathsf {SPHF} \) means the adversary can see the projective key \(ph \) before choosing the word \(W \).
- 3.
They improved the Gennaro-Lindell framework to reduce the round number to two.
- 4.
We use big-O notation to asymptotically bound the growth of a running time to within constant factors.
References
Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols secure against dictionary attacks. In: Proceedings of the IEEE S&P 1992, pp. 72–84 (1992)
Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_29
Hao, F., Ryan, P.: J-PAKE: authenticated key exchange without PKI. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Part II. LNCS, vol. 6480, pp. 192–206. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17697-5_10
Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_15
Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_33
Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_11
Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_25
Groce, A., Katz, J.: A new framework for efficient password-based authenticated key exchange. In: Proceedings of the ACM CCS 2010, pp. 516–525 (2010)
Jiang, S., Gong, G.: Password based key exchange with mutual authentication. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4_19
Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistinguishable under plaintext-checkable attacks. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 332–352. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_15
Zhang, J., Yu, Y.: Two-round PAKE from approximate SPH and instantiations from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 37–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_2
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_37
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of ACM STOC 2005, pp. 84–93 (2005)
Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_18
Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE password-authenticated key exchange protocol. In: Proceedings of IEEE S&P 2015, pp. 571–587 (2015)
Wang, D., Wang, P.: On the implications of Zipf’s law in passwords. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016, Part I. LNCS, vol. 9878, pp. 111–131. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45744-4_6
Wang, D., Cheng, H., Wang, P., Huang, X., Jian, G.: Zipf’s law in passwords. IEEE Trans. Inform. Foren. Secur. 12(11), 2776–2791 (2017)
Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 337–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_22
Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_24
Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_9
Dupont, P.-A., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy password-authenticated key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 393–424. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_13
Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_4
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50
Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proceedings of ACM STOC 2009, pp. 333–342 (2009)
Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Proceedings of ACM STOC 2008, pp. 187–196 (2008)
Li, Z., Ma, C., Wang, D.: Leakage resilient leveled FHE on multiple bit message. IEEE Trans. Big Data. https://doi.org/10.1109/TBDATA.2017.2726554
Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21
Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party case. In: Proceedings of ACM STOC 1995, pp. 57–66 (1995)
Katz, J., Ostrovsky, R., Yung, M.: Efficient and secure authenticated key exchange using weak passwords. J. ACM 57(1), 3:1–3:39 (2009)
Jarecki, S., Krawczyk, H., Shirvanian, M., Saxena, N.: Two-factor authentication with end-to-end password security. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 431–461. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_15
Huang, K., Manulis, M., Chen, L.: Password authenticated keyword search. In: Proceedings of PAC 2017, pp. 129–140 (2017)
Wang, D., Wang, P.: Two birds with one stone: two-factor authentication with security beyond conventional bound. IEEE Trans. Depend. Secure Comput. 15(4), 708–722 (2018)
Becerra, J., Iovino, V., Ostrev, D., Šala, P., Škrobot, M.: Tightly-secure PAK(E). In: Capkun, S., Chow, S.S.M. (eds.) CANS 2017. LNCS, vol. 11261, pp. 27–48. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02641-7_2
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of ACM STOC 2008, pp. 197–206 (2008)
Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21
Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)
Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)
Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lattices revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 644–674. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_22
Abdalla, M., Ben Hamouda, F., Pointcheval, D.: Tighter reductions for forward-secure signature schemes. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 292–311. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_19
Katz, J., Ostrovsky, R., Yung, M.: Forward secrecy in password-only key exchange protocols. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 29–44. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_3
Acknowledgments
The authors would like to thank the anonymous reviewers for their helpful advice and comments. This work was supported by the National Natural Science Foundation of China (No. 61802006 and No. 61802214).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, Z., Wang, D. (2019). Two-Round PAKE Protocol over Lattices Without NIZK. In: Guo, F., Huang, X., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2018. Lecture Notes in Computer Science(), vol 11449. Springer, Cham. https://doi.org/10.1007/978-3-030-14234-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-14234-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-14233-9
Online ISBN: 978-3-030-14234-6
eBook Packages: Computer ScienceComputer Science (R0)