Skip to main content

Prediction of Journey Destination for Travelers of Urban Public Transport: A Comparison Model Study

  • Conference paper
  • First Online:
Intelligent Transport Systems, From Research and Development to the Market Uptake (INTSYS 2018)

Abstract

In public transport, smart card-based ticketing system allows to redesign the UPT network, by providing customized transport services, or incentivize travelers to change specific patterns. However, in open systems, to develop personalized connections the journey destination must be known before the end of the travel. Thus, to obtain that knowledge, in this study three models (Top-K, NB, and J48) were applied using different groups of travelers of an urban public transport network located in a medium-sized European metropolitan area (Porto, Portugal). Typical travelers were selected from the segmentation of transportation card signatures, and groups were defined based on the traveler age or economic conditions. The results show that is possible to predict the journey’s destination based on the past with an accuracy rate that varies, on average, from 20% in the worst scenarios to 65% in the best.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 60.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foell, S., Phithakkitnukoon, S., Kortuem, G., Veloso, M., Bento, C.: Predictability of public transport usage: a study of bus rides in Lisbon, Portugal. IEEE Trans. Intell. Transp. Syst. 16, 2955–2960 (2015)

    Article  Google Scholar 

  2. Gardner, B., Abraham, C.: What drives car use? A grounded theory analysis of commuters’ reasons for driving. Transp. Res. Part F Traffic Psychol. Behav. 10, 187–200 (2007)

    Article  Google Scholar 

  3. Zimmerman, J., et al.: Field trial of Tiramisu: crowd-sourcing bus arrival times to spur co-design. In: Proceedings of 2011 Annual Conference Human Factors Computing System - CHI 2011, pp. 1677–1686 (2011)

    Google Scholar 

  4. Caragliu, A., del Bo, C., Nijkamp, P.: Smart cities in Europe. J. Urban Technol. 18, 65–82 (2011)

    Article  Google Scholar 

  5. Gordon, J.J., Koutsopoulos, H., Wilson, N., Attanucci, J.: Automated inference of linked transit journeys in London using fare-transaction and vehicle location data. Transp. Res. Rec. J. Transp. Res. Board. 2343, 17–24 (2013)

    Article  Google Scholar 

  6. Weigang, L., Koendjbiharie, M.W., De Jucá, R.C.M., Yamasiiita, Y., Maciver, A.: Algorithms for estimating bus arrival times using GPS data. In: IEEE Conference on Intelligent Transportation Systems Proceedings, ITSC, pp. 868–873 (2002)

    Google Scholar 

  7. Lee, S.G., Hickman, M.: Trip purpose inference using automated fare collection data. Publ. Transp. 6, 1–20 (2014)

    Article  Google Scholar 

  8. Giannopoulos, G.A.: The application of information and communication technologies in transport. Eur. J. Oper. Res. 152, 302–320 (2004)

    Article  Google Scholar 

  9. Costa, V., Fontes, T., Costa, P.M., Galvao, T.: How to predict journey destination for supporting contextual intelligent information services? IEEE Conference on Intelligent Transportation Systems Proceedings, ITSC, pp. 2959–2964 (2015)

    Google Scholar 

  10. Nunes, A.A., Dias, T.G., Cunha, J.F.: Passenger journey destination estimation from automated fare collection system data using spatial validation. IEEE Trans. Intell. Transp. 17, 133–142 (2016)

    Article  Google Scholar 

  11. Patterson, D.J., et al.: Opportunity knocks: a system to provide cognitive assistance with transportation services. International Conference on Ubiquitous Computing (UbiComp), pp. 433–450 (2004)

    Google Scholar 

  12. Bera, S., Rao, K.V.K.: Estimation of origin-destination matrix from traffic counts: the state of the art. Eur. Transp. - Trasp. Eur. 49, 3–23 (2011)

    Google Scholar 

  13. Ma, X., Wang, Y., Chen, F., Liu, J.: Transit smart card data mining for passenger origin information extraction. J. Zhejiang Univ. Sci. C. 13, 750–760 (2012)

    Article  Google Scholar 

  14. Kusakabe, T., Asakura, Y.: Behavioural data mining of transit smart card data: a data fusion approach. Transp. Res. Part C Emerg. Technol. 46, 179–191 (2014)

    Article  Google Scholar 

  15. Krizek, K., El-Geneidy, A.: Segmenting preferences and habits of transit users and non-users. J. Publ. Transp. 10, 71–94 (2007)

    Article  Google Scholar 

  16. Kieu, L.M., Bhaskar, A., Chung, E.: Transit passenger segmentation using travel regularity mined from smart card transactions data. In: Transportation Research Board, 93rd Annual Meeting Washington, D.C. (2014)

    Google Scholar 

  17. Foth, M., Schroeter, R., Ti, J.: Opportunities of public transport experience enhancements with mobile services and urban screens. Int. J. Ambient Comput. Intell. 5, 1–18 (2013)

    Article  Google Scholar 

  18. Roth, C., Kang, S.M., Batty, M., Barthélemy, M.: Structure of urban movements: polycentric activity and entangled hierarchical flows. PLoS ONE 6, e15923 (2011)

    Article  Google Scholar 

  19. Hasan, S., Schneider, C.M., Ukkusuri, S.V., González, M.C.: Spatiotemporal patterns of urban human mobility. J. Stat. Phys. 151, 304–318 (2013)

    Article  MathSciNet  Google Scholar 

  20. Tao, S., Rohde, D., Corcoran, J.: Examining the spatial-temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap. J. Transp. Geogr. 41, 21–36 (2014)

    Article  Google Scholar 

  21. Yu, W., Mao, M., Wang, B., Liu, X.: Implementation evaluation of Beijing urban master plan based on subway transit smart card data. In: Proceedings of 2014 22nd International Conference on Geoinformatics, Geoinformatics 2014, pp. 1–6 (2014)

    Google Scholar 

  22. Gong, Y., Liu, Y., Lin, Y., Yang, J., Duan, Z., Li, G.: Exploring spatiotemporal characteristics of intra-urban trips using metro smartcard records. In: Proceedings of 2012 20th International Conference on Geoinformatics, Geoinformatics 2012, pp. 1–7 (2012)

    Google Scholar 

  23. Foell, S., Kortuem, G., Rawassizadeh, R., Phithakkitnukoon, S., Veloso, M., Bento, C.: Mining temporal patterns of transport behaviour for predicting future transport usage conference item mining temporal patterns of transport behaviour for predicting future transport usage. In: ACM Conference on Pervasive Ubiquitous Computing Adjunct Publication, pp. 1239–1248 (2013)

    Google Scholar 

  24. Foell, S., Phithakkitnukoon, S., Kortuem, G., Veloso, M., Bento, C.: Catch me if you can: predicting mobility patterns of public transport users conference item predicting mobility patterns of public transport users. In: IEEE 17th International Conference. Intelligent Transportation Systems, pp. 1995–2002 (2014)

    Google Scholar 

  25. Van Der Hurk, E., Kroon, L., Maróti, G., Vervest, P.: Deduction of passengers’ route choices from smart card data. IEEE Trans. Intell. Transp. Syst. 16, 430–440 (2015)

    Article  Google Scholar 

  26. Ma, X., Wu, Y.J., Wang, Y., Chen, F., Liu, J.: Mining smart card data for transit riders’ travel patterns. Transp. Res. Part C Emerg. Technol. 36, 1–12 (2013)

    Article  Google Scholar 

  27. Fontes, T., Costa, V., Costa, P.M., Dias, T.G.: Analysis of urban mobility patterns using data from public transport ticketing system: implications for developing autonomic systems. In: Autonomous Road Transport Support Systems Early Career Research Conference, Greece, pp. 1–6 (2015)

    Google Scholar 

  28. Costa, V., Fontes, T., Costa, P.M., Dias, T.G.: Prediction of journey destination in urban public transport. In: Progress in Artificial Intelligence: 17th Portuguese Conference on Artificial Intelligence, pp. 169–180 (2015)

    Google Scholar 

  29. TIP: Relatório e Contas. Transportes Intermodais do Porto (2014)

    Google Scholar 

  30. Trépanier, M., Tranchant, N., Chapleau, R.: Individual trip destination estimation in a transit smart card automated fare collection system. J. Intell. Transp. Syst. Technol. Plann. Oper. 11, 1–14 (2007)

    Article  Google Scholar 

  31. Zhao, J., Rahbee, A., Wilson, N.H.M.: Estimating a rail passenger trip origin-destination matrix using automatic data collection systems. Comput. Civ. Infrastruct. Eng. 22, 376–387 (2007)

    Article  Google Scholar 

  32. Munizaga, M.A., Palma, C.: Estimation of a disaggregate multimodal public transport origin-destination matrix from passive smartcard data from Santiago, Chile. Transp. Res. Part C Emerg. Technol. 24, 9–18 (2012)

    Article  Google Scholar 

  33. Metwally, A., Agrawal, D., El Abbadi, A.: Efficient computation of frequent and top-k elements in data streams. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 398–412. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30570-5_27

    Chapter  Google Scholar 

  34. Sarmento, R., Cordeiro, M., Gama, J.: Streaming networks sampling using top-K networks. In: ICEIS 2015 - 17th International Conference on Enterprise Information Systems Proceedings, vol. 1, pp. 228–234 (2015)

    Google Scholar 

  35. Yildirim, P., Birant, D.: Naive Bayes classifier for continuous variables using novel method (NBC4D) and distributions. In: 2014 IEEE International Symposium Innovations in Intelligent Systems and Applications Proceedings, pp. 110–115 (2014)

    Google Scholar 

  36. Patil, T.R.: Performance analysis of Naive Bayes and J48 classification algorithm for data classification. Int. J. Comput. Sci. Appl. 6, 256–261 (2013). ISSN 0974–1011

    Google Scholar 

  37. Hand, D.J., Yu, K.: Idiot’s Bayes-not so stupid after all? Int. Stat. Rev. 69, 385–398 (2001)

    MATH  Google Scholar 

  38. Inza, I., Larrañaga, P., Etxeberria, R., Sierra, B.: Feature subset selection by Bayesian networks based optimization. Artif. Intell. 123, 157–184 (2000)

    Article  Google Scholar 

  39. Peng, Y., Ye, Y., Yin, J.: Decision tree construction algorithm based on association rules. In: Proceedings 2nd International Conference on Computer Science and Application System Model, pp. 754–756 (2012)

    Google Scholar 

  40. Mohamed, W.N.H.W., Salleh, M.N.M., Omar, A.H.: A comparative study of reduced error pruning method in decision tree algorithms. In: Proceedings 2012 IEEE International Conference on Control System Computing and Engineering, ICCSCE 2012, pp. 392–397 (2012)

    Google Scholar 

  41. Friedl, M.A., Brodley, C.E.: Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 61, 399–409 (1997)

    Article  Google Scholar 

  42. Fayyad, M.U., Irani, K.B.: The attribute selection problem in decision tree generation. In: Proceeding of AAAI 1992 Proceedings of tenth National Conference on Artificial intelligence, pp. 104–110 (1992)

    Google Scholar 

Download references

Acknowledgments

The Portuguese Science and Technology Foundation (FCT) funded the Doctoral scholarship of V. Costa (Ref. PD/BD/128065/2016) and the Post-Doctoral scholarship of T. Fontes (Ref. SFRH/BPD/109426/2015). The authors also acknowledge to the transport providers of Oporto, TIP, STCP, Metro do Porto and Transdev which provide travel data for the project, and also to our partner in the project, OPT company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costa, V., Fontes, T., Borges, J.L., Dias, T.G. (2019). Prediction of Journey Destination for Travelers of Urban Public Transport: A Comparison Model Study. In: Ferreira, J., Martins, A., Monteiro, V. (eds) Intelligent Transport Systems, From Research and Development to the Market Uptake. INTSYS 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-030-14757-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14757-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14756-3

  • Online ISBN: 978-3-030-14757-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics