Skip to main content

Dynamic Average Value-at-Risk Allocation on Worst Scenarios in Asset Management

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11436))

  • 683 Accesses

Abstract

A dynamic portfolio optimization model with average value-at-risks is discussed for drastic declines of asset prices. Analytical solutions for the optimization at each time are obtained by mathematical programming. By dynamic programming, an optimality equation for optimal average value-at-risks over time is derived. The optimal portfolios and the corresponding average value-at-risks are given as solutions of the optimality equation. A numerical example is given to understand the solutions and the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MathSciNet  Google Scholar 

  2. El Chaoui, L., Oks, M., Oustry, F.: Worst-case value at risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51, 543–556 (2003)

    Article  MathSciNet  Google Scholar 

  3. Cotter, J., Dowd, K.: Extreme spectral risk measures: an application to futures clearinghouse margin requirements. J. Bank. Finance 30, 3469–3485 (2006)

    Article  Google Scholar 

  4. Javidi, A.A.: Entropic value-at-risk: a new coherent risk measure. J. Optim. Theory Appl. 155, 1105–1123 (2012)

    Article  MathSciNet  Google Scholar 

  5. Jorion, P.: Value at Risk: The New Benchmark for Managing Financial Risk. McGraw-Hill, New York (2006)

    Google Scholar 

  6. Markowitz, H.: Mean-Variance Analysis in Portfolio Choice and Capital Markets. Blackwell, Oxford (1990)

    MATH  Google Scholar 

  7. Meucci, A.: Risk and Asset Allocation. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-27904-4

    Book  MATH  Google Scholar 

  8. Pliska, S.R.: Introduction to Mathematical Finance: Discrete-Time Models. Blackwell Publisher, New York (1997)

    Google Scholar 

  9. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000)

    Article  Google Scholar 

  10. Ross, S.M.: An Introduction to Mathematical Finance. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  11. Steinbach, M.C.: Markowitz revisited: mean-variance model in financial portfolio analysis. SIAM Rev. 43, 31–85 (2001)

    Article  MathSciNet  Google Scholar 

  12. Tasche, D.: Expected shortfall and beyond. J. Bank. Finance 26, 1519–1533 (2002)

    Article  Google Scholar 

  13. Yoshida, Y.: A dynamic value-at-risk portfolio model. In: Torra, V., Narakawa, Y., Yin, J., Long, J. (eds.) MDAI 2011. LNCS (LNAI), vol. 6820, pp. 43–54. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22589-5_6

    Chapter  Google Scholar 

  14. Yoshida, Y.: A dynamic risk allocation of value-at-risks with portfolios. J. Adv. Comput. Intell. Intell. Inform. 16, 800–806 (2012)

    Article  Google Scholar 

  15. Yoshida, Y.: An ordered weighted average with a truncation weight on intervals. In: Torra, V., Narukawa, Y., López, B., Villaret, M. (eds.) MDAI 2012. LNCS (LNAI), vol. 7647, pp. 45–55. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34620-0_6

    Chapter  Google Scholar 

  16. Yoshida, Y.: An optimal process for average value-at-risk portfolios in financial management. In: Ntalianis, K., Croitoru, A. (eds.) APSAC 2017. LNEE, vol. 428, pp. 101–107. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-53934-8_12

    Chapter  Google Scholar 

Download references

Acknowledgments

This research is supported from JSPS KAKENHI Grant Number JP 16K05282.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yoshida, Y., Kumamoto, S. (2019). Dynamic Average Value-at-Risk Allocation on Worst Scenarios in Asset Management. In: Gopal, T., Watada, J. (eds) Theory and Applications of Models of Computation. TAMC 2019. Lecture Notes in Computer Science(), vol 11436. Springer, Cham. https://doi.org/10.1007/978-3-030-14812-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14812-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14811-9

  • Online ISBN: 978-3-030-14812-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics