Abstract
A dynamic portfolio optimization model with average value-at-risks is discussed for drastic declines of asset prices. Analytical solutions for the optimization at each time are obtained by mathematical programming. By dynamic programming, an optimality equation for optimal average value-at-risks over time is derived. The optimal portfolios and the corresponding average value-at-risks are given as solutions of the optimality equation. A numerical example is given to understand the solutions and the results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)
El Chaoui, L., Oks, M., Oustry, F.: Worst-case value at risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51, 543–556 (2003)
Cotter, J., Dowd, K.: Extreme spectral risk measures: an application to futures clearinghouse margin requirements. J. Bank. Finance 30, 3469–3485 (2006)
Javidi, A.A.: Entropic value-at-risk: a new coherent risk measure. J. Optim. Theory Appl. 155, 1105–1123 (2012)
Jorion, P.: Value at Risk: The New Benchmark for Managing Financial Risk. McGraw-Hill, New York (2006)
Markowitz, H.: Mean-Variance Analysis in Portfolio Choice and Capital Markets. Blackwell, Oxford (1990)
Meucci, A.: Risk and Asset Allocation. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-27904-4
Pliska, S.R.: Introduction to Mathematical Finance: Discrete-Time Models. Blackwell Publisher, New York (1997)
Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000)
Ross, S.M.: An Introduction to Mathematical Finance. Cambridge University Press, Cambridge (1999)
Steinbach, M.C.: Markowitz revisited: mean-variance model in financial portfolio analysis. SIAM Rev. 43, 31–85 (2001)
Tasche, D.: Expected shortfall and beyond. J. Bank. Finance 26, 1519–1533 (2002)
Yoshida, Y.: A dynamic value-at-risk portfolio model. In: Torra, V., Narakawa, Y., Yin, J., Long, J. (eds.) MDAI 2011. LNCS (LNAI), vol. 6820, pp. 43–54. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22589-5_6
Yoshida, Y.: A dynamic risk allocation of value-at-risks with portfolios. J. Adv. Comput. Intell. Intell. Inform. 16, 800–806 (2012)
Yoshida, Y.: An ordered weighted average with a truncation weight on intervals. In: Torra, V., Narukawa, Y., López, B., Villaret, M. (eds.) MDAI 2012. LNCS (LNAI), vol. 7647, pp. 45–55. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34620-0_6
Yoshida, Y.: An optimal process for average value-at-risk portfolios in financial management. In: Ntalianis, K., Croitoru, A. (eds.) APSAC 2017. LNEE, vol. 428, pp. 101–107. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-53934-8_12
Acknowledgments
This research is supported from JSPS KAKENHI Grant Number JP 16K05282.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Yoshida, Y., Kumamoto, S. (2019). Dynamic Average Value-at-Risk Allocation on Worst Scenarios in Asset Management. In: Gopal, T., Watada, J. (eds) Theory and Applications of Models of Computation. TAMC 2019. Lecture Notes in Computer Science(), vol 11436. Springer, Cham. https://doi.org/10.1007/978-3-030-14812-6_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-14812-6_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-14811-9
Online ISBN: 978-3-030-14812-6
eBook Packages: Computer ScienceComputer Science (R0)