Abstract
Swarm robotics is a relatively new research field that employs multiple robots (tens, hundreds or even thousands) that collaborate on complex tasks. There are several issues which limit the real-world application of swarm robotic scenarios, e.g. autonomy time, communication methods, and cost of commercialised robots. We present a platform, which aims to overcome the aforementioned limitations while using off-the-shelf components and freely-available software. The platform combines (i) a versatile open-hardware micro-robot capable of local and global communication, (ii) commercially-available wireless charging modules which provide virtually unlimited robot operation time, (iii) open-source marker-based robot tracking system for automated experiment evaluation, (iv) and a LCD display or a light projector to simulate environmental cues and pheromone communication. To demonstrate the versatility of the system, we present several scenarios, where our system was used.
The work has been supported by UK EPSRC (Project No. EP/P01366X/1), EU H2020 STEP2DYNA (691154), and Czech Science Foundation project 17-27006Y.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahn, S.J., Rauh, W., Recknagel, M.: Circular coded landmark for optical 3D-measurement and robot vision. In: IROS, pp. 1128–1133 (1999)
Arvin, F., Espinosa, J., Bird, B., West, A., Watson, S., Lennox, B.: Mona: an affordable open-source mobile robot for education and research. J. Intell. Robotic Syst. 92, 1–15 (2018)
Arvin, F., Turgut, A., Bazyari, F., Arikan, K., Bellotto, N., Yue, S.: Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method. Adapt. Behav. 22, 189–206 (2014)
Arvin, F., Attar, A., Turgut, A.E., Yue, S.: Power-law distribution of long-term experimental data in swarm robotics. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI 2015. LNCS, vol. 9140, pp. 551–559. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20466-6_58
Arvin, F., Krajník, T., Turgut, A.E., Yue, S.: COS\(\Phi \): artificial pheromone system for robotic swarms research. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 407–412 (2015)
Arvin, F., Murray, J., Zhang, C., Yue, S.: Colias: an autonomous micro robot for swarm robotic applications. Int. J. Adv. Rob. Syst. 11(7), 113 (2014)
Arvin, F., Samsudin, K., Ramli, A.R.: Swarm robots long term autonomy using moveable charger. In: International Conference on Future Computer and Communication (2009)
Arvin, F., Samsudin, K., Ramli, A.R., Bekravi, M.: Imitation of honeybee aggregation with collective behavior of swarm robots. Int. J. Comput. Intell. Syst. 4(4), 739–748 (2011)
Arvin, F., Turgut, A.E., Krajník, T., Yue, S.: Investigation of cue-based aggregation in static and dynamic environments with a mobile robot swarm. Adapt. Behav. 24(2), 102–118 (2016)
Arvin, F., Watson, S., Turgut, A.E., Espinosa, J., Krajník, T., Lennox, B.: Perpetual robot swarm: long-term autonomy of mobile robots using on-the-fly inductive charging. J. Intell. Rob. Syst. 92(3–4), 1–18 (2017)
Arvin, F., et al.: \(\Phi \)Clust: pheromone-based aggregation for robotic swarms. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018)
Bayindir, L., Şahin, E.: Modeling self-organized aggregation in swarm robotic systems. In: Swarm Intelligence Symposium, pp. 88–95. IEEE (2009)
Bonani, M., et al.: The marxbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: IROS (2010)
Bošnak, M., Matko, D., Blažič, S.: Quadrocopter hovering using position-estimation information from inertial sensors and a high-delay video system. J. Intell. Rob. Syst. 67(1), 43–60 (2012)
Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)
Breitenmoser, A., Kneip, L., Siegwart, R.: A monocular vision-based system for 6D relative robot localization. In: IROS, pp. 79–85 (2011)
Carrillo, M., et al.: A bio-inspired approach for collaborative exploration with mobile battery recharging in swarm robotics. In: Korošec, P., Melab, N., Talbi, E.-G. (eds.) BIOMA 2018. LNCS, vol. 10835, pp. 75–87. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91641-5_7
Correll, N., Martinoli, A.: Modeling self-organized aggregation in a swarm of miniature robots. In: ICRA Workshop on Collective Behaviors inspired by Biological and Biochemical Systems (2007)
Deyle, T., Reynolds, M.: Surface based wireless power transmission and bidirectional communication for autonomous robot swarms. In: ICRA. IEEE (2008)
Fiala, M.: ARTag, An Improved Marker System Based on ARToolkit (2004)
Fiala, M.: Vision guided control of multiple robots. In: First Canadian Conference on Computer and Robot Vision, pp. 241–246 (2004)
Floreano, D., Mondada, F.: Automatic creation of an autonomous agent: genetic evolution of a neural network driven robot. In: 3rd International Conference on Simulation of Adaptive Behavior: From Animals to Animats 3 (1994)
Fossum, F., Montanier, J.M., Haddow, P.C.: Repellent pheromones for effective swarm robot search in unknown environments. In: IEEE Symposium on Swarm Intelligence (SIS), pp. 1–8 (2014)
Fu, Q., Hu, C., Peng, J., Yue, S.: Shaping the collision selectivity in a looming sensitive neuron model with parallel ON and OFF pathways and spike frequency adaptation. Neural Netw. 106, 127–143 (2018)
Fujisawa, R., Dobata, S., Sugawara, K., Matsuno, F.: Designing pheromone communication in swarm robotics: group foraging behavior mediated by chemical substance. Swarm Intell. 8(3), 227–246 (2014)
Garnier, S., Combe, M., Jost, C., Theraulaz, G.: Do ants need to estimate the geometrical properties of trail bifurcations to find an efficient route? A swarm robotics test bed. PLoS Comput. Biol. 9(3), e1002903 (2013)
Griparić, K., Haus, T., Miklić, D., Polić, M., Bogdan, S.: A robotic system for researching social integration in honeybees. PLoS ONE 12(8), e0181977 (2017)
Hamann, H.: Space-time continuous models of swarm robotics systems: supporting global-to-local programming. Ph.D. thesis, Department of Computer Science, University of Karlsruhe (2008)
Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74528-2
Hamann, H., Markarian, C., auf der Heide, F.M., Wahby, M.: Pick, pack, & survive: charging robots in a modern warehouse based on online connected dominating sets. In: 9th International Conference on Fun with Algorithms (FUN 2018), vol. 100, pp. 1–13 (2018)
Herianto, H., Sakakibara, T., Kurabayashi, D.: Artificial pheromone system using RFID for navigation of autonomous robots. J. Bionic Eng. 4(4), 245–253 (2007)
Holland, O., Melhuish, C.: An interactive method for controlling group size in multiple mobile robot systems. In: ICAR, pp. 201–206 (1997)
Hu, C., Arvin, F., Xiong, C., Yue, S.: A bio-inspired embedded vision system for autonomous micro-robots: the LGMD case. IEEE Trans. Cogn. Dev. Syst. 9(3), 241–254 (2017)
de Ipin̈a, D.L., Mendonça, P.R.S., Hopper, A.: TRIP: a low-cost vision-based location system for ubiquitous computing. Pers. Ubiquit. Comput. 6(3), 206–219 (2002)
Ismail, A.R., Desia, R., Zuhri, M.F.R.: The initial investigation of the design and energy sharing algorithm using two-ways communication mechanism for swarm robotic systems. In: Phon-Amnuaisuk, S., Au, T.W. (eds.) Computational Intelligence in Information Systems. AISC, vol. 331, pp. 61–71. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13153-5_7
Karpelson, M., et al.: A wirelessly powered, biologically inspired ambulatory microrobot. In: ICRA, pp. 2384–2391. IEEE (2014)
Khaliq, A.A., Saffiotti, A.: Stigmergy at work: planning and navigation for a service robot on an RFID floor. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1085–1092 (2015)
Klingner, J., Kanakia, A., Farrow, N., Reishus, D., Correll, N.: A stick-slip omnidirectional drive-train for low-cost swarm robotics: mechanism, calibration, and control. In: IROS, pp. 846–851 (2014)
Krajník, T., et al.: A practical multirobot localization system. J. Intell. Rob. Syst. 76(3–4), 539–562 (2014)
Krajník, T., et al.: A practical multirobot localization system. J. Intell. Rob. Syst. 76(3–4), 539–562 (2014)
Krajnik, T., Nitsche, M., Faigl, J., Duckett, T., Mejail, M., Preucil, L.: External localization system for mobile robotics. In: 2013 16th International Conference on Advanced Robotics (ICAR), pp. 1–6. IEEE (2013)
Krajník, T., Santos, J.M., Duckett, T.: Life-long spatio-temporal exploration of dynamic environments. In: 2015 European Conference on Mobile Robots (ECMR), pp. 1–8. IEEE (2015)
Krieger, M.J., Billeter, J.B., Keller, L.: Ant-like task allocation and recruitment in cooperative robots. Nature 406(6799), 992–995 (2000)
Kulich, M., Chudoba, J., Košnar, K., Krajník, T., Faigl, J., Přeučil, L.: Syrotek - distance teaching of mobile robotics. IEEE Trans. Educ. 56(1), 18–23 (2013)
Lightbody, P., Krajník, T., Hanheide, M.: An efficient visual fiducial localisation system. SIGAPP Appl. Comput. Rev. 17(3), 28–37 (2017). https://doi.org/10.1145/3161534.3161537
Lightbody, P., Krajník, T., Hanheide, M.: A versatile high-performance visual fiducial marker detection system with scalable identity encoding. In: Proceedings of the Symposium on Applied Computing, SAC 2017, pp. 276–282. ACM, New York (2017). https://doi.org/10.1145/3019612.3019709
Martinoli, A., Ijspeert, A., Mondada, F.: Understanding collective aggregation mechanisms: from probabilistic modelling to experiments with real robots. Rob. Auton. Syst. 29(1), 51–63 (1999)
Mayet, R., Roberz, J., Schmickl, T., Crailsheim, K.: Antbots: a feasible visual emulation of pheromone trails for swarm robots. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 84–94. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15461-4_8
McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speaking swarmish: human-robot interface design for large swarms of autonomous mobile robots. In: AAAI Spring Symposium (2006)
Mintchev, S., Ranzani, R., Fabiani, F., Stefanini, C.: Towards docking for small scale underwater robots. Auton. Robots 38(3), 283–299 (2015)
Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: ICRA, pp. 3400–3407. IEEE, May 2011
Pedre, S., Krajník, T., Todorovich, E., Borensztejn, P.: Hardware/software co-design for real time embedded image processing: a case study. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 599–606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33275-3_74
Phoenix: Phoenix 3D motion capture. http://www.ptiphoenix.com/. Accessed 18 Aug 2018
Purnamadjaja, A.H., Russell, R.A.: Bi-directional pheromone communication between robots. Robotica 28(01), 69–79 (2010)
Rekleitis, I., Meger, D., Dudek, G.: Simultaneous planning, localization, and mapping in a camera sensor network. Rob. Auton. Syst. 54(11), 921–932 (2006)
Rezeck, P.A., Azpurua, H., Chaimowicz, L.: HeRo: an open platform for robotics research and education. In: Latin American Robotics Symposium (LARS) and Brazilian Symposium on Robotics (SBR), pp. 1–6 (2017)
Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image Vis. Comput. 76, 38–47 (2018)
Russell, R.A.: Ant trails-an example for robots to follow? In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 2698–2703 (1999)
Russell, R.A.: Air vortex ring communication between mobile robots. Rob. Auton. Syst. 59(2), 65–73 (2011)
Santos, J.M., Krajník, T., Fentanes, J.P., Duckett, T.: Lifelong information-driven exploration to complete and refine 4-D spatio-temporal maps. IEEE Rob. Autom. Lett. 1(2), 684–691 (2016)
Schmickl, T., Hamann, H., Worn, H., Crailsheim, K.: Two different approaches to a macroscopic model of a bio-inspired robotic swarm. Rob. Auton. Syst. 57(9), 913–921 (2009)
Schmickl, T., et al.: Get in touch: cooperative decision making based on robot-to-robot collisions. Auton. Agents Multi-Agent Syst. 18(1), 133–155 (2009)
Soysal, O., Şahin, E.: A macroscopic model for self-organized aggregation in swarm robotic systems. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SR 2006. LNCS, vol. 4433, pp. 27–42. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71541-2_3
Stump, E., Kumar, V., Grocholsky, B., Shiroma, P.M.: Control for localization of targets using range-only sensors. Int. J. Rob. Res. 28(6), 743–757 (2009)
Sugawara, K., Kazama, T., Watanabe, T.: Foraging behavior of interacting robots with virtual pheromone. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3074–3079 (2004)
Takaya, Y.U., Arita, T.: Situated and embodied evolution in collective evolutionary robotics. In: International Symposium on Artificial Life and Robotics (2003)
Turgut, A.E., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile robot swarms. Swarm Intell. 2(2), 97–120 (2008)
Valentini, G., et al.: Kilogrid: a novel experimental environment for the kilobot robot. Swarm Intell. 12, 1–22 (2018)
Vaussard, F., Rétornaz, P., Roelofsen, S., Bonani, M., Rey, F., Mondada, F.: Towards long-term collective experiments. In: Lee, S., Cho, H., Yoon, K.J., Lee, J. (eds.) Intelligent Autonomous Systems 12. AISC, vol. 194, pp. 683–692. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33932-5_64
Vicon: Vicon MX Systems. http://www.vicon.com/products/viconmx.html. Accessed 12 July 2013
Wagner, D., Schmalstieg, D.: ARToolKitPlus for pose tracking on mobile devices. In: 12th Computer Vision Winter Workshop (CVWW), pp. 139–146 (2007)
Walter, V., Saska, M., Franchi, A.: Fast mutual relative localization of UAVs using ultraviolet LED markers. In: 2018 International Conference on Unmanned Aircraft Systems (2018)
Watson, R.A., Ficiei, S., Pollack, J.B.: Embodied evolution: embodying an evolutionary algorithm in a population of robots. In: Congress on Evolutionary Computation (1999)
West, A., Arvin, F., H. Martin, S.W., Lennox, B.: ROS Integration for Miniature Mobile Robots. In: Towards Autonomous Robotic Systems (TAROS) (2018)
Winfield, A.F., Nembrini, J.: Emergent swarm morphology control of wireless networked mobile robots. In: Doursat, R., Sayama, H., Michel, O. (eds.) Morphogenetic Engineering, pp. 239–271. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33902-8_10
Yamamoto, Y., et al.: Optical sensing for robot perception and localization. In: IEEE Workshop on Advanced Robotics and its Social Impacts, pp. 14–17 (2005)
Yang, S., Scherer, S., Zell, A.: An onboard monocular vision system for autonomous takeoff, hovering and landing of a micro aerial vehicle. J. Intell. Rob. Syst. 69(1–4), 499–515 (2013)
Zhang, Z., Xu, X., Li, B., Deng, B.: An energy-encrypted contactless charging system for swarm robots. In: Magnetics Conference (INTERMAG) (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Arvin, F., Krajník, T., Emre Turgut, A. (2019). P\(\mathrm {\Phi }\)SS: An Open-Source Experimental Setup for Real-World Implementation of Swarm Robotic Systems in Long-Term Scenarios. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2018. Lecture Notes in Computer Science(), vol 11472. Springer, Cham. https://doi.org/10.1007/978-3-030-14984-0_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-14984-0_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-14983-3
Online ISBN: 978-3-030-14984-0
eBook Packages: Computer ScienceComputer Science (R0)