Skip to main content

P\(\mathrm {\Phi }\)SS: An Open-Source Experimental Setup for Real-World Implementation of Swarm Robotic Systems in Long-Term Scenarios

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2018)

Abstract

Swarm robotics is a relatively new research field that employs multiple robots (tens, hundreds or even thousands) that collaborate on complex tasks. There are several issues which limit the real-world application of swarm robotic scenarios, e.g. autonomy time, communication methods, and cost of commercialised robots. We present a platform, which aims to overcome the aforementioned limitations while using off-the-shelf components and freely-available software. The platform combines (i) a versatile open-hardware micro-robot capable of local and global communication, (ii) commercially-available wireless charging modules which provide virtually unlimited robot operation time, (iii) open-source marker-based robot tracking system for automated experiment evaluation, (iv) and a LCD display or a light projector to simulate environmental cues and pheromone communication. To demonstrate the versatility of the system, we present several scenarios, where our system was used.

The work has been supported by UK EPSRC (Project No. EP/P01366X/1), EU H2020 STEP2DYNA (691154), and Czech Science Foundation project 17-27006Y.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/MonaRobot.

  2. 2.

    https://www.arduino.cc.

References

  1. Ahn, S.J., Rauh, W., Recknagel, M.: Circular coded landmark for optical 3D-measurement and robot vision. In: IROS, pp. 1128–1133 (1999)

    Google Scholar 

  2. Arvin, F., Espinosa, J., Bird, B., West, A., Watson, S., Lennox, B.: Mona: an affordable open-source mobile robot for education and research. J. Intell. Robotic Syst. 92, 1–15 (2018)

    Article  Google Scholar 

  3. Arvin, F., Turgut, A., Bazyari, F., Arikan, K., Bellotto, N., Yue, S.: Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method. Adapt. Behav. 22, 189–206 (2014)

    Article  Google Scholar 

  4. Arvin, F., Attar, A., Turgut, A.E., Yue, S.: Power-law distribution of long-term experimental data in swarm robotics. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI 2015. LNCS, vol. 9140, pp. 551–559. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20466-6_58

    Chapter  Google Scholar 

  5. Arvin, F., Krajník, T., Turgut, A.E., Yue, S.: COS\(\Phi \): artificial pheromone system for robotic swarms research. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 407–412 (2015)

    Google Scholar 

  6. Arvin, F., Murray, J., Zhang, C., Yue, S.: Colias: an autonomous micro robot for swarm robotic applications. Int. J. Adv. Rob. Syst. 11(7), 113 (2014)

    Article  Google Scholar 

  7. Arvin, F., Samsudin, K., Ramli, A.R.: Swarm robots long term autonomy using moveable charger. In: International Conference on Future Computer and Communication (2009)

    Google Scholar 

  8. Arvin, F., Samsudin, K., Ramli, A.R., Bekravi, M.: Imitation of honeybee aggregation with collective behavior of swarm robots. Int. J. Comput. Intell. Syst. 4(4), 739–748 (2011)

    Google Scholar 

  9. Arvin, F., Turgut, A.E., Krajník, T., Yue, S.: Investigation of cue-based aggregation in static and dynamic environments with a mobile robot swarm. Adapt. Behav. 24(2), 102–118 (2016)

    Article  Google Scholar 

  10. Arvin, F., Watson, S., Turgut, A.E., Espinosa, J., Krajník, T., Lennox, B.: Perpetual robot swarm: long-term autonomy of mobile robots using on-the-fly inductive charging. J. Intell. Rob. Syst. 92(3–4), 1–18 (2017)

    Google Scholar 

  11. Arvin, F., et al.: \(\Phi \)Clust: pheromone-based aggregation for robotic swarms. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018)

    Google Scholar 

  12. Bayindir, L., Şahin, E.: Modeling self-organized aggregation in swarm robotic systems. In: Swarm Intelligence Symposium, pp. 88–95. IEEE (2009)

    Google Scholar 

  13. Bonani, M., et al.: The marxbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: IROS (2010)

    Google Scholar 

  14. Bošnak, M., Matko, D., Blažič, S.: Quadrocopter hovering using position-estimation information from inertial sensors and a high-delay video system. J. Intell. Rob. Syst. 67(1), 43–60 (2012)

    Article  Google Scholar 

  15. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  16. Breitenmoser, A., Kneip, L., Siegwart, R.: A monocular vision-based system for 6D relative robot localization. In: IROS, pp. 79–85 (2011)

    Google Scholar 

  17. Carrillo, M., et al.: A bio-inspired approach for collaborative exploration with mobile battery recharging in swarm robotics. In: Korošec, P., Melab, N., Talbi, E.-G. (eds.) BIOMA 2018. LNCS, vol. 10835, pp. 75–87. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91641-5_7

    Chapter  Google Scholar 

  18. Correll, N., Martinoli, A.: Modeling self-organized aggregation in a swarm of miniature robots. In: ICRA Workshop on Collective Behaviors inspired by Biological and Biochemical Systems (2007)

    Google Scholar 

  19. Deyle, T., Reynolds, M.: Surface based wireless power transmission and bidirectional communication for autonomous robot swarms. In: ICRA. IEEE (2008)

    Google Scholar 

  20. Fiala, M.: ARTag, An Improved Marker System Based on ARToolkit (2004)

    Google Scholar 

  21. Fiala, M.: Vision guided control of multiple robots. In: First Canadian Conference on Computer and Robot Vision, pp. 241–246 (2004)

    Google Scholar 

  22. Floreano, D., Mondada, F.: Automatic creation of an autonomous agent: genetic evolution of a neural network driven robot. In: 3rd International Conference on Simulation of Adaptive Behavior: From Animals to Animats 3 (1994)

    Google Scholar 

  23. Fossum, F., Montanier, J.M., Haddow, P.C.: Repellent pheromones for effective swarm robot search in unknown environments. In: IEEE Symposium on Swarm Intelligence (SIS), pp. 1–8 (2014)

    Google Scholar 

  24. Fu, Q., Hu, C., Peng, J., Yue, S.: Shaping the collision selectivity in a looming sensitive neuron model with parallel ON and OFF pathways and spike frequency adaptation. Neural Netw. 106, 127–143 (2018)

    Article  Google Scholar 

  25. Fujisawa, R., Dobata, S., Sugawara, K., Matsuno, F.: Designing pheromone communication in swarm robotics: group foraging behavior mediated by chemical substance. Swarm Intell. 8(3), 227–246 (2014)

    Article  Google Scholar 

  26. Garnier, S., Combe, M., Jost, C., Theraulaz, G.: Do ants need to estimate the geometrical properties of trail bifurcations to find an efficient route? A swarm robotics test bed. PLoS Comput. Biol. 9(3), e1002903 (2013)

    Article  MathSciNet  Google Scholar 

  27. Griparić, K., Haus, T., Miklić, D., Polić, M., Bogdan, S.: A robotic system for researching social integration in honeybees. PLoS ONE 12(8), e0181977 (2017)

    Article  Google Scholar 

  28. Hamann, H.: Space-time continuous models of swarm robotics systems: supporting global-to-local programming. Ph.D. thesis, Department of Computer Science, University of Karlsruhe (2008)

    Google Scholar 

  29. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74528-2

    Book  Google Scholar 

  30. Hamann, H., Markarian, C., auf der Heide, F.M., Wahby, M.: Pick, pack, & survive: charging robots in a modern warehouse based on online connected dominating sets. In: 9th International Conference on Fun with Algorithms (FUN 2018), vol. 100, pp. 1–13 (2018)

    Google Scholar 

  31. Herianto, H., Sakakibara, T., Kurabayashi, D.: Artificial pheromone system using RFID for navigation of autonomous robots. J. Bionic Eng. 4(4), 245–253 (2007)

    Article  Google Scholar 

  32. Holland, O., Melhuish, C.: An interactive method for controlling group size in multiple mobile robot systems. In: ICAR, pp. 201–206 (1997)

    Google Scholar 

  33. Hu, C., Arvin, F., Xiong, C., Yue, S.: A bio-inspired embedded vision system for autonomous micro-robots: the LGMD case. IEEE Trans. Cogn. Dev. Syst. 9(3), 241–254 (2017)

    Article  Google Scholar 

  34. de Ipin̈a, D.L., Mendonça, P.R.S., Hopper, A.: TRIP: a low-cost vision-based location system for ubiquitous computing. Pers. Ubiquit. Comput. 6(3), 206–219 (2002)

    Google Scholar 

  35. Ismail, A.R., Desia, R., Zuhri, M.F.R.: The initial investigation of the design and energy sharing algorithm using two-ways communication mechanism for swarm robotic systems. In: Phon-Amnuaisuk, S., Au, T.W. (eds.) Computational Intelligence in Information Systems. AISC, vol. 331, pp. 61–71. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13153-5_7

    Chapter  Google Scholar 

  36. Karpelson, M., et al.: A wirelessly powered, biologically inspired ambulatory microrobot. In: ICRA, pp. 2384–2391. IEEE (2014)

    Google Scholar 

  37. Khaliq, A.A., Saffiotti, A.: Stigmergy at work: planning and navigation for a service robot on an RFID floor. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1085–1092 (2015)

    Google Scholar 

  38. Klingner, J., Kanakia, A., Farrow, N., Reishus, D., Correll, N.: A stick-slip omnidirectional drive-train for low-cost swarm robotics: mechanism, calibration, and control. In: IROS, pp. 846–851 (2014)

    Google Scholar 

  39. Krajník, T., et al.: A practical multirobot localization system. J. Intell. Rob. Syst. 76(3–4), 539–562 (2014)

    Article  Google Scholar 

  40. Krajník, T., et al.: A practical multirobot localization system. J. Intell. Rob. Syst. 76(3–4), 539–562 (2014)

    Article  Google Scholar 

  41. Krajnik, T., Nitsche, M., Faigl, J., Duckett, T., Mejail, M., Preucil, L.: External localization system for mobile robotics. In: 2013 16th International Conference on Advanced Robotics (ICAR), pp. 1–6. IEEE (2013)

    Google Scholar 

  42. Krajník, T., Santos, J.M., Duckett, T.: Life-long spatio-temporal exploration of dynamic environments. In: 2015 European Conference on Mobile Robots (ECMR), pp. 1–8. IEEE (2015)

    Google Scholar 

  43. Krieger, M.J., Billeter, J.B., Keller, L.: Ant-like task allocation and recruitment in cooperative robots. Nature 406(6799), 992–995 (2000)

    Article  Google Scholar 

  44. Kulich, M., Chudoba, J., Košnar, K., Krajník, T., Faigl, J., Přeučil, L.: Syrotek - distance teaching of mobile robotics. IEEE Trans. Educ. 56(1), 18–23 (2013)

    Article  Google Scholar 

  45. Lightbody, P., Krajník, T., Hanheide, M.: An efficient visual fiducial localisation system. SIGAPP Appl. Comput. Rev. 17(3), 28–37 (2017). https://doi.org/10.1145/3161534.3161537

    Article  Google Scholar 

  46. Lightbody, P., Krajník, T., Hanheide, M.: A versatile high-performance visual fiducial marker detection system with scalable identity encoding. In: Proceedings of the Symposium on Applied Computing, SAC 2017, pp. 276–282. ACM, New York (2017). https://doi.org/10.1145/3019612.3019709

  47. Martinoli, A., Ijspeert, A., Mondada, F.: Understanding collective aggregation mechanisms: from probabilistic modelling to experiments with real robots. Rob. Auton. Syst. 29(1), 51–63 (1999)

    Article  Google Scholar 

  48. Mayet, R., Roberz, J., Schmickl, T., Crailsheim, K.: Antbots: a feasible visual emulation of pheromone trails for swarm robots. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 84–94. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15461-4_8

    Chapter  Google Scholar 

  49. McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speaking swarmish: human-robot interface design for large swarms of autonomous mobile robots. In: AAAI Spring Symposium (2006)

    Google Scholar 

  50. Mintchev, S., Ranzani, R., Fabiani, F., Stefanini, C.: Towards docking for small scale underwater robots. Auton. Robots 38(3), 283–299 (2015)

    Article  Google Scholar 

  51. Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: ICRA, pp. 3400–3407. IEEE, May 2011

    Google Scholar 

  52. Pedre, S., Krajník, T., Todorovich, E., Borensztejn, P.: Hardware/software co-design for real time embedded image processing: a case study. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 599–606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33275-3_74

    Chapter  Google Scholar 

  53. Phoenix: Phoenix 3D motion capture. http://www.ptiphoenix.com/. Accessed 18 Aug 2018

  54. Purnamadjaja, A.H., Russell, R.A.: Bi-directional pheromone communication between robots. Robotica 28(01), 69–79 (2010)

    Article  Google Scholar 

  55. Rekleitis, I., Meger, D., Dudek, G.: Simultaneous planning, localization, and mapping in a camera sensor network. Rob. Auton. Syst. 54(11), 921–932 (2006)

    Article  Google Scholar 

  56. Rezeck, P.A., Azpurua, H., Chaimowicz, L.: HeRo: an open platform for robotics research and education. In: Latin American Robotics Symposium (LARS) and Brazilian Symposium on Robotics (SBR), pp. 1–6 (2017)

    Google Scholar 

  57. Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image Vis. Comput. 76, 38–47 (2018)

    Article  Google Scholar 

  58. Russell, R.A.: Ant trails-an example for robots to follow? In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 2698–2703 (1999)

    Google Scholar 

  59. Russell, R.A.: Air vortex ring communication between mobile robots. Rob. Auton. Syst. 59(2), 65–73 (2011)

    Article  Google Scholar 

  60. Santos, J.M., Krajník, T., Fentanes, J.P., Duckett, T.: Lifelong information-driven exploration to complete and refine 4-D spatio-temporal maps. IEEE Rob. Autom. Lett. 1(2), 684–691 (2016)

    Article  Google Scholar 

  61. Schmickl, T., Hamann, H., Worn, H., Crailsheim, K.: Two different approaches to a macroscopic model of a bio-inspired robotic swarm. Rob. Auton. Syst. 57(9), 913–921 (2009)

    Article  Google Scholar 

  62. Schmickl, T., et al.: Get in touch: cooperative decision making based on robot-to-robot collisions. Auton. Agents Multi-Agent Syst. 18(1), 133–155 (2009)

    Article  MathSciNet  Google Scholar 

  63. Soysal, O., Şahin, E.: A macroscopic model for self-organized aggregation in swarm robotic systems. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SR 2006. LNCS, vol. 4433, pp. 27–42. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71541-2_3

    Chapter  Google Scholar 

  64. Stump, E., Kumar, V., Grocholsky, B., Shiroma, P.M.: Control for localization of targets using range-only sensors. Int. J. Rob. Res. 28(6), 743–757 (2009)

    Article  Google Scholar 

  65. Sugawara, K., Kazama, T., Watanabe, T.: Foraging behavior of interacting robots with virtual pheromone. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3074–3079 (2004)

    Google Scholar 

  66. Takaya, Y.U., Arita, T.: Situated and embodied evolution in collective evolutionary robotics. In: International Symposium on Artificial Life and Robotics (2003)

    Google Scholar 

  67. Turgut, A.E., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile robot swarms. Swarm Intell. 2(2), 97–120 (2008)

    Article  Google Scholar 

  68. Valentini, G., et al.: Kilogrid: a novel experimental environment for the kilobot robot. Swarm Intell. 12, 1–22 (2018)

    Article  Google Scholar 

  69. Vaussard, F., Rétornaz, P., Roelofsen, S., Bonani, M., Rey, F., Mondada, F.: Towards long-term collective experiments. In: Lee, S., Cho, H., Yoon, K.J., Lee, J. (eds.) Intelligent Autonomous Systems 12. AISC, vol. 194, pp. 683–692. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33932-5_64

    Chapter  Google Scholar 

  70. Vicon: Vicon MX Systems. http://www.vicon.com/products/viconmx.html. Accessed 12 July 2013

  71. Wagner, D., Schmalstieg, D.: ARToolKitPlus for pose tracking on mobile devices. In: 12th Computer Vision Winter Workshop (CVWW), pp. 139–146 (2007)

    Google Scholar 

  72. Walter, V., Saska, M., Franchi, A.: Fast mutual relative localization of UAVs using ultraviolet LED markers. In: 2018 International Conference on Unmanned Aircraft Systems (2018)

    Google Scholar 

  73. Watson, R.A., Ficiei, S., Pollack, J.B.: Embodied evolution: embodying an evolutionary algorithm in a population of robots. In: Congress on Evolutionary Computation (1999)

    Google Scholar 

  74. West, A., Arvin, F., H. Martin, S.W., Lennox, B.: ROS Integration for Miniature Mobile Robots. In: Towards Autonomous Robotic Systems (TAROS) (2018)

    Google Scholar 

  75. Winfield, A.F., Nembrini, J.: Emergent swarm morphology control of wireless networked mobile robots. In: Doursat, R., Sayama, H., Michel, O. (eds.) Morphogenetic Engineering, pp. 239–271. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33902-8_10

    Chapter  Google Scholar 

  76. Yamamoto, Y., et al.: Optical sensing for robot perception and localization. In: IEEE Workshop on Advanced Robotics and its Social Impacts, pp. 14–17 (2005)

    Google Scholar 

  77. Yang, S., Scherer, S., Zell, A.: An onboard monocular vision system for autonomous takeoff, hovering and landing of a micro aerial vehicle. J. Intell. Rob. Syst. 69(1–4), 499–515 (2013)

    Article  Google Scholar 

  78. Zhang, Z., Xu, X., Li, B., Deng, B.: An energy-encrypted contactless charging system for swarm robots. In: Magnetics Conference (INTERMAG) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Arvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arvin, F., Krajník, T., Emre Turgut, A. (2019). P\(\mathrm {\Phi }\)SS: An Open-Source Experimental Setup for Real-World Implementation of Swarm Robotic Systems in Long-Term Scenarios. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2018. Lecture Notes in Computer Science(), vol 11472. Springer, Cham. https://doi.org/10.1007/978-3-030-14984-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14984-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14983-3

  • Online ISBN: 978-3-030-14984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics