Abstract
Biogeography based Optimization (BBO) is a new evolutionary optimization algorithm based on the science of biogeography for global optimization. However, its direct-copying-based migration and random mutation operators make it easily possess local exploitation ability. To enhance the performance of BBO, we propose an improved BBO algorithm called imBBO. A hybrid migration operation is designed to further improve the population diversity and enhance the algorithm exploration ability. Empirical results demonstrate that our imBBO effectively gains the high optimization performance by comparing with the original BBO and three BBO variants for 23 out of 30 CEC’2017 benchmarks. Moreover, our imBBO presents a faster convergence speed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alatas, B.: ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst. Appl. 38(10), 13170–13180 (2011)
Arora, J.S.: Jan A. Snyman, practical mathematical optimization: an introduction to basic optimization theory and classical and new gradient-based algorithms. Struct. Multi. Optim. 31(3), 249–249 (2006)
Awad, N., Ali, M., Liang, B., Qu, B., Suganthan, P.: Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization. Technical report (2016). http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017
Bhattacharya, A., Chattopadhyay, P.K.: Hybrid differential evolution with biogeography-based optimization algorithm for solution of economic emission load dispatch problems. Expert Syst. Appl. 38(11), 14001–14010 (2011)
Černý, V.: Thermodynamical approach to the traveling salesman problem: AN efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)
Deep, K., Thakur, M.: A new mutation operator for real coded genetic algorithms. Appl. Math. Comput. 193(1), 211–230 (2007)
Du, D., Simon, D., Ergezer, M.: Biogeography-based optimization combined with evolutionary strategy and immigration refusal. In: Proceedings of International Conference on Systems, Man and Cybernetics, San Antonio, USA, pp. 997–1002 (2009)
Ekta, M.K.: Biogeography based optimization: a review. In: International Conference on Computing for Sustainable Global Development (2015)
Ellabib, I., Calamai, P.H., Basir, O.A.: Exchange strategies for multiple Ant Colony System. Inf. Sci. 177(5), 1248–1264 (2007)
Engelbrecht, A.P.: Computational Intelligence - An Introduction, 2nd edn. Wiley, Hoboken (2007)
Ergezer, M., Simon, D., Du, D.: Oppositional biogeography-based optimization. In: Proceedings of the IEEE International Conference on Systems, Manand Cybernetics, San Antonio, USA. pp. 1009–1014 (2009)
Feng, S.L., Zhu, Q.X., Gong, X.J., Zhong, S.: Hybridizing biogeography-based optimization with differential evolution for motif discovery problem. Appl. Mech. Mater. 457–458(4), 309–312 (2014)
Garg, V., Deep, K.: Performance of Laplacian biogeography-based optimization algorithm on CEC 2014 continuous optimization benchmarks and camera calibration problem. Swarm Evol. Comput. 27, 132–144 (2016)
Gong, W., Cai, Z., Ling, C.X.: DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft. Comput. 15(4), 645–665 (2010)
Gong, W., Cai, Z., Ling, C.X., Li, H.: A real-coded biogeography-based optimization with mutation. Appl. Math. Comput. 216(9), 2749–2758 (2010)
Jadon, S.S., Tiwari, R., Sharma, H., Bansal, J.C.: Hybrid artificial bee colony algorithm with differential evolution. Appl. Soft Comput. 58, 11–24 (2017)
Kanoongo, S., Jain, P.: Blended biogeography based optimization for different economic load dispatch problem. In: Proceedings of the 25th International Conference on Electrical and Computer Engineering (CCECE), Montreal, QC, Canada, pp. 1–5 (2012)
Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 789–798. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72950-1_77
Li, X., Wang, J., Zhou, J., Yin, M.: A perturb biogeography based optimization with mutation for global numerical optimization. Appl. Math. Comput. 218(2), 598–609 (2011)
Li, X., Yin, M.: Multi-operator based biogeography based optimization with mutation for global numerical optimization. Comput. Math Appl. 64(9), 2833–2844 (2012)
Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)
Lohokare, M.R., Panigrahi, B.K., Pattnaik, S.S., Devi, S., Mohapatra, A.: Neighborhood search-driven accelerated biogeography-based optimization for optimal load dispatch. IEEE Trans. Syst. Man Cybern. Part C 42(5), 641–652 (2012)
Ma, H.: An analysis of the equilibrium of migration models for biogeography-based optimization. Inf. Sci. 180(18), 3444–3464 (2010)
Ma, H., Simon, D.: Biogeography-based optimization with blended migration for constrained optimization problems. In: Proceedings of the International Conference on Genetic and Evolutionary Computation Conference (GECCO), Portland, Oregon, USA, pp. 417–418 (2010)
Ma, H., Simon, D.: Analysis of migration models of biogeography-based optimization using markov theory. Eng. Appl. AI 24(6), 1052–1060 (2011)
Ma, H., Simon, D.: Blended biogeography-based optimization for constrained optimization. Eng. Appl. AI 24(3), 517–525 (2011)
Ma, H., Simon, D., Fei, M., Shu, X., Chen, Z.: Hybrid biogeography-based evolutionary algorithms. Eng. Appl. AI 30, 213–224 (2014)
Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)
O’Reilly, U.: Genetic programming II: automatic discovery of reusable programs. Artif. Life 1(4), 439–441 (1994)
Pholdee, N., Bureerat, S.: Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints. Adv. Eng. Softw. 75, 1–13 (2014)
Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31306-0
Rarick, R.A., Simon, D., Villaseca, F.E., Vyakaranam, B.: Biogeography-based optimization and the solution of the power flow problem. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, pp. 1003–1008 (2009)
Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)
Shi, K., Yu, H., Fan, G., Luo, F.: iCPBBOCO: a combination evaluation algorithm based on the extensional BBO. In: Proceedings of International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Chengdu, China, pp. 717–723 (2016)
Shi, K., Yu, H., Luo, F., Fan, G.: Multi-objective biogeography-based method to optimize virtual machine consolidation. In: Proceedings of 28th International Conference on Software Engineering and Knowledge Engineering (SEKE), Redwood City, San Francisco Bay, USA, pp. 225–230 (2016)
Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)
Simon, D.: A dynamic system model of biogeography-based optimization. Appl. Soft Comput. 11(8), 5652–5661 (2011)
Simon, D., Omran, M.G.H., Clerc, M.: Linearized biogeography-based optimization with re-initialization and local search. Inf. Sci. 267, 140–157 (2014)
Singh, U., Singh, D., Kaur, C.: Hybrid differential evolution with biogeography based optimization for Yagi-Uda antenna design. In: Proceedings of the International Conference on Circuit, Power and Computing Technologies, pp. 1163–1167 (2015)
Storn, R., Price, K.V.: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)
Xiong, G., Shi, D., Duan, X.: Enhancing the performance of biogeography-based optimization using polyphyletic migration operator and orthogonal learning. Comput. OR 41, 125–139 (2014)
Yao, X., Liu, Y.: Fast evolution strategies. In: Angeline, P.J., Reynolds, R.G., McDonnell, J.R., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, pp. 149–161. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0014808
Zheng, Q., et al.: Virtual machine consolidated placement based on multi-objective biogeography-based optimization. Futur. Gener. Comput. Syst. 54, 95–122 (2016)
Acknowledgments
This work is partially supported by the NSF of China under grants No. 61772200, 61702334 and No. 61472139, Shanghai Pujiang Talent Program under grants No. 17PJ1401900, Shanghai Municipal Natural Science Foundation under Grants No. 17ZR1406900 and 17ZR1429700, Educational Research Fund of ECUST under Grant No. ZH1726108, the Collaborative Innovation Foundation of Shanghai Institute of Technology under Grants No. XTCX2016-20, the Opening Project of Key Lab of Information Network Security of Ministry of Public Security Under No. C17604, Key Lab of Information Network Security of Ministry of Public Security Under No. C17604.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Shi, K., Yu, H., Fan, G., Yang, X., Song, Z. (2019). imBBO: An Improved Biogeography-Based Optimization Algorithm. In: Li, S. (eds) Green, Pervasive, and Cloud Computing. GPC 2018. Lecture Notes in Computer Science(), vol 11204. Springer, Cham. https://doi.org/10.1007/978-3-030-15093-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-15093-8_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15092-1
Online ISBN: 978-3-030-15093-8
eBook Packages: Computer ScienceComputer Science (R0)