Abstract
Due to the current lack of effectiveness on perception, management, and coordination for urban computing applications, a great number of semantic data has not yet been fully exploited and utilized, decreasing the effectiveness of urban services. To address the problem, we propose a semantic data management framework, RDFStore, for large-scale urban data management and query. RDFStore uses hashcode as the basic encoding pattern for semantic data storage. Based on the characteristics of strong connectedness of the data clique with different semantics, we construct indexes through the maximum clique on the whole semantic data. The large-scale semantic data of urban computing is organized and managed. On the basis of clique index, we adopt CLARANS clustering to enhance the accessibility of vertexes, and the data management is fulfilled. The experiment compares RDFStore to the mainstream platforms, and the results show that the proposed framework does enhance the effectiveness of semantic data management for urban computing applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zheng, Y., Liu, Y., Yuan, J., et al.: Urban computing with taxicabs. In: Proceedings of the 13th International Conference on Ubiquitous Computing, pp. 89–98. ACM (2011)
Jiang, S., Fiore, G.A., Yang, Y., et al.: A review of urban computing for mobile phone traces: current methods, challenges and opportunities. In: Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, p. 2. ACM (2013)
Yuan, P., Liu, P., Wu, B., et al.: TripleBit: a fast and compact system for large scale RDF data. Proc. VLDB Endow. 6(7), 517–528 (2013)
Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: a generic architecture for storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-48005-6_7
Wilkinson, K., Wilkinson, K.: Jena property table implementation (2006)
Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF data. VLDB J. Int. J. Very Large Data Bases 19(1), 91–113 (2010)
Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data management. Proc. VLDB Endow. 1(1), 1008–1019 (2008)
Atre, M., Chaoji, V., Zaki, M.J., et al.: Matrix Bit loaded: a scalable lightweight join query processor for RDF data. In: Proceedings of the 19th International Conference on World Wide Web, pp. 41–50. ACM (2010)
Modoni, G.E., Sacco, M., Terkaj, W.: A survey of RDF store solutions. In: 2014 International ICE Conference on Engineering, Technology and Innovation (ICE), pp. 1–7. IEEE (2014)
Chambi, S., Lemire, D., Kaser, O., et al.: Better bitmap performance with roaring bitmaps. Softw. Pract. Exp. 46(5), 709–719 (2016)
Yan, Y., Wang, C., Zhou, A., et al.: Efficiently querying RDF data in triple stores. In: Proceedings of the 17th International Conference on World Wide Web, pp. 1053–1054. ACM (2008)
Sidirourgos, L., Goncalves, R., Kersten, M., et al.: Column-store support for RDF data management: not all swans are white. Proc. VLDB Endow. 1(2), 1553–1563 (2008)
Bonstrom, V., Hinze, A., Schweppe, H.: Storing RDF as a graph. In: Proceedings of Web Congress. First Latin American, pp. 27–36. IEEE (2003)
Kim, J., Shin, H., Han, W.S., et al.: Taming subgraph isomorphism for RDF query processing. Proc. VLDB Endow. 8(11), 1238–1249 (2015)
Peng, P., Zou, L., Özsu, M.T., et al.: Processing SPARQL queries over distributed RDF graphs. VLDB J. 25(2), 243–268 (2016)
Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theoret. Comput. Sci. 363(1), 28–42 (2006)
Zheng, W., Zou, L., Lian, X., et al.: SQBC: an efficient subgraph matching method over large and dense graphs. Inf. Sci. 261, 116–131 (2014)
Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very efficient heuristics for the maximum clique problem. J. Heuristics 14(6), 587–612 (2008)
Unger, C., Forascu, C., Lopez, V., et al.: Question answering over linked data (QALD-4). In: Working Notes for CLEF 2014 Conference (2014)
Khan, A., Wu, Y., Aggarwal, C.C., et al.: Nema: fast graph search with label similarity. Proc. VLDB Endow. 6(3), 181–192 (2013)
Yang, S., Wu, Y., Sun, H., et al.: Schemaless and structureless graph querying. Proc. VLDB Endow. 7(7), 565–576 (2014)
Zheng, W., Zou, L., Peng, W., et al.: Semantic SPARQL similarity search over RDF knowledge graphs. Proc. VLDB Endow. 9(11), 840–851 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Song, S., Zhang, X., Guo, B. (2019). Large-Scale Semantic Data Management For Urban Computing Applications. In: Li, S. (eds) Green, Pervasive, and Cloud Computing. GPC 2018. Lecture Notes in Computer Science(), vol 11204. Springer, Cham. https://doi.org/10.1007/978-3-030-15093-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-15093-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15092-1
Online ISBN: 978-3-030-15093-8
eBook Packages: Computer ScienceComputer Science (R0)