Abstract
In this paper, we propose a translation model on subgragh representing knowledge graph. The model builds an ensemble TransE model on subgraph divided by features of relations in triplets by training the model with different parts of dataset independently. Afterwards, experimental results on link prediction show improvements on parameters compared to the state-of-the-art baselines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bollacker, K., Evans, C., Paritosh, P., et al.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of KDD 2008, pp. 1247–1250. ACM, New York (2008)
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Liu, Q., Li, Y., Duan, H., Liu, Y., Qin, Z.: Knowledge graph construction techniques. J. Comput. Res. Dev. 53(03), 582–600 (2016)
Liu, Q.: Research on natural language semantic representation and reasoning based on neural networks. University of Science and Technology of China (2017)
Liu, Z., Sun, M., Lin, Y., Xie, R.: Knowledge representation learning: a review. J. Comput. Res. Dev. 53(02), 247–261 (2016)
Bordes, A., Usunier, N., Garcia-Duran, A., et al.: Translating embeddings for modeling multi-relational data. In: Proceedings of NIPS 2013, pp. 2787–2795. MIT Press, Cambridge (2013)
Wang, Z., Zhang, J., Feng, J., et al.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of AAAI 2014, pp. 1112–1119. AAAI, Menlo Park (2014)
Lin, Y., Liu, Z., Sun, M., et al.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of AAAI 2015. AAAI, Menlo Park (2015)
Xiao, H., Huang, M., Hao, Y., et al.: TransA: an adaptive approach for knowledge graph embedding. Computer Science (2015), 27 September 2016
Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. arXiv preprint arXiv:150600379 (2015)
Xiao, H., Huang, M., Zhu, X.: From one point to a manifold: knowledge graph embedding for precise link prediction. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, pp. 1315–1321. AAAI (2016)
Liu, H., Wu, Y., Yang, Y.: Analogical inference for multi-relational embeddings. arXiv preprint arXiv:1705.02426 (2017)
Chang, L., Zhu, M., Gu, T., Bin, C., Qian, J., Zhang, J.: Knowledge graph embedding by dynamic translation. IEEE Access 5, 20898–20907 (2017)
Duan, P., Wang, Y., Xiong, S., Mao, J.: Space projection and relation path based representation learning for construction of geography knowledge graph. J. Chin. Inf. Process. 32(03), 26–33 (2018)
Fang, Y., Zhao, X., Tan, Z., Yang, S., Xiao, W.: A revised translation-based method for knowledge graph representation. J. Comput. Res. Dev. 55(01), 139–150 (2018)
Xie, R., Liu, Z., Sun, M.: Representation learning of knowledge graphs with hierarchical types. In: International Joint Conference on Artificial Intelligence, pp. 2965–2971. AAAI Press (2016)
Lin, Y., Liu, Z., Sun, M.: Knowledge representation learning with entities, attributes and relations. IEEE Signal Process. Lett. 23(4), 1 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Tan, Y., Li, R., Zhou, J., Zhu, S. (2019). Knowledge Graph Embedding by Translation Model on Subgraph. In: Tang, Y., Zu, Q., RodrÃguez GarcÃa, J. (eds) Human Centered Computing. HCC 2018. Lecture Notes in Computer Science(), vol 11354. Springer, Cham. https://doi.org/10.1007/978-3-030-15127-0_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-15127-0_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15126-3
Online ISBN: 978-3-030-15127-0
eBook Packages: Computer ScienceComputer Science (R0)