Skip to main content

Knowledge Graph Embedding by Translation Model on Subgraph

  • Conference paper
  • First Online:
Human Centered Computing (HCC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11354))

Included in the following conference series:

Abstract

In this paper, we propose a translation model on subgragh representing knowledge graph. The model builds an ensemble TransE model on subgraph divided by features of relations in triplets by training the model with different parts of dataset independently. Afterwards, experimental results on link prediction show improvements on parameters compared to the state-of-the-art baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bollacker, K., Evans, C., Paritosh, P., et al.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of KDD 2008, pp. 1247–1250. ACM, New York (2008)

    Google Scholar 

  2. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  3. Liu, Q., Li, Y., Duan, H., Liu, Y., Qin, Z.: Knowledge graph construction techniques. J. Comput. Res. Dev. 53(03), 582–600 (2016)

    Google Scholar 

  4. Liu, Q.: Research on natural language semantic representation and reasoning based on neural networks. University of Science and Technology of China (2017)

    Google Scholar 

  5. Liu, Z., Sun, M., Lin, Y., Xie, R.: Knowledge representation learning: a review. J. Comput. Res. Dev. 53(02), 247–261 (2016)

    Google Scholar 

  6. Bordes, A., Usunier, N., Garcia-Duran, A., et al.: Translating embeddings for modeling multi-relational data. In: Proceedings of NIPS 2013, pp. 2787–2795. MIT Press, Cambridge (2013)

    Google Scholar 

  7. Wang, Z., Zhang, J., Feng, J., et al.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of AAAI 2014, pp. 1112–1119. AAAI, Menlo Park (2014)

    Google Scholar 

  8. Lin, Y., Liu, Z., Sun, M., et al.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of AAAI 2015. AAAI, Menlo Park (2015)

    Google Scholar 

  9. Xiao, H., Huang, M., Hao, Y., et al.: TransA: an adaptive approach for knowledge graph embedding. Computer Science (2015), 27 September 2016

    Google Scholar 

  10. Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. arXiv preprint arXiv:150600379 (2015)

  11. Xiao, H., Huang, M., Zhu, X.: From one point to a manifold: knowledge graph embedding for precise link prediction. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, pp. 1315–1321. AAAI (2016)

    Google Scholar 

  12. Liu, H., Wu, Y., Yang, Y.: Analogical inference for multi-relational embeddings. arXiv preprint arXiv:1705.02426 (2017)

  13. Chang, L., Zhu, M., Gu, T., Bin, C., Qian, J., Zhang, J.: Knowledge graph embedding by dynamic translation. IEEE Access 5, 20898–20907 (2017)

    Article  Google Scholar 

  14. Duan, P., Wang, Y., Xiong, S., Mao, J.: Space projection and relation path based representation learning for construction of geography knowledge graph. J. Chin. Inf. Process. 32(03), 26–33 (2018)

    Google Scholar 

  15. Fang, Y., Zhao, X., Tan, Z., Yang, S., Xiao, W.: A revised translation-based method for knowledge graph representation. J. Comput. Res. Dev. 55(01), 139–150 (2018)

    Google Scholar 

  16. Xie, R., Liu, Z., Sun, M.: Representation learning of knowledge graphs with hierarchical types. In: International Joint Conference on Artificial Intelligence, pp. 2965–2971. AAAI Press (2016)

    Google Scholar 

  17. Lin, Y., Liu, Z., Sun, M.: Knowledge representation learning with entities, attributes and relations. IEEE Signal Process. Lett. 23(4), 1 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongjun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, Y., Li, R., Zhou, J., Zhu, S. (2019). Knowledge Graph Embedding by Translation Model on Subgraph. In: Tang, Y., Zu, Q., Rodríguez García, J. (eds) Human Centered Computing. HCC 2018. Lecture Notes in Computer Science(), vol 11354. Springer, Cham. https://doi.org/10.1007/978-3-030-15127-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15127-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15126-3

  • Online ISBN: 978-3-030-15127-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics