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Abstract. Approaches have been proposed in process mining to predict
the completion time of process instances. However, the accuracy levels
of the prediction models depend on how useful the log attributes used to
build such models are. A canonical subset of attributes can also offer a
better understanding of the underlying process. We describe the appli-
cation of two automatic attribute selection methods to build prediction
models for completion time. The filter was used with ranking whereas
the wrapper was used with hill-climbing and best-first techniques. Anno-
tated transition systems were used as the prediction model. Compared to
decision-making by human experts, only the automatic attribute selec-
tors using wrappers performed better. The filter-based attribute selector
presented the lowest performance on generalization capacity. The seman-
tic reasonability of the selected attributes in each case was analyzed in
a real-world incident management process.

Keywords: Process mining - Attribute selection -
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1 Introduction

Estimates for the completion time of business process instances are still precari-
ous as they are usually calculated based on superficial and naive abstractions of
the process of interest [1]. Many organizations have been using Process-Aware
Information Systems (PAIS), which record events about the activities carried
out in the process involved, generating a large amount of data. Process mining
can exploit these event logs to infer a more realistic process model [2], which
can be used as a completion time predictor [3]. In fact, general data mining
techniques and the similar have been applied for different purposes to improve
the performance of organizations by making them intelligent [4-6].
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However, specifically in terms of distinct strategies addressing prediction of
completion time for business processes, a common gap of is the lack of concern in
choosing the input log configuration. It is not common to seek the best subset of
descriptive attributes of the log to support constructing a more effective predic-
tor, as happens in [3,7-10]. For an incident management process, for example,
some descriptive attributes for each instance process (i.e., for each incident) can
be status, severity, symptom, category, impact, assignment group etc.

Two inputs are expected when building a process model as a completion time
predictor — an event log and a set of descriptive attributes. Depending on the
organizational settings, the number of existing descriptive attributes can be so
large and complex that may be unfeasible to use all the attributes. In addition,
studies have shown that the predictive accuracy of process models depends on
which attributes have been chosen to create them [11]. Therefore, when building
a prediction model, one needs to consider that not all attributes are necessarily
useful. In fact, according to Kohavi and John [12], a predictor can degrade in per-
formance (accuracy) when faced with many unnecessary features to predict the
desired output. Thus, an ideal minimum subset of descriptive attributes should
be selected that contains as much relevant information as necessary to build
an accurate prediction model, i.e., a canonical subset of descriptive attributes
should be selected.

However, a manual selection of a subset of descriptive attributes may be
impracticable. In this sense, this paper details a proposal of how to apply two
automatic attribute selection methods as the basis for building prediction mod-
els'. Consider here an event log e composed of a set of categorical descrip-
tive attributes A = {aj,aq, - ,a,,} that characterize the events of a process
instance. Consider {2 a set whose elements are all combinations of attributes
in A; each combination of attributes w; € {2 can be used to generate a model
0; € ©, where O is a set of models that represent a process under distinct aspects.
Consider the process models 6; € @ as predictors of completion time, generated
on samples e} of the event log e; each model 6(w, e’) has a particular prediction
performance. Consider the prediction error as the measure of performance. The
problem of interest in this paper is formulated as

argmin e(6(w, e')),
we

where the minimization process looks for a w € 2 such that e(6;(w;,e})) <
€(0;(wj, e})) ¥ j, where 4, j = {1,--- ,#8}, i # j and #- represents the number
of elements in a set.

In this paper, the minimization process is implemented through a filter tech-
nique [14] and two wrapper techniques [12] as the attribute selection methods,
using heuristic search techniques — a filter with ranking and the wrapper with
hill-climbing and with best-first. These classical attribute selection methods are
used to automatically determine a canonical subset of descriptive attributes to

! This paper details the approach and results published in a summarized preliminary
version [13].
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be subsequently supplied to the prediction model. Annotated Transition Sys-
tems (ATS) [3] were chosen as the prediction model to compare the different
techniques used. ATSs are a good example of a prediction model in this context
as they largely depend on the attributes used. For the experiments and analyzes
reported herein, € is the mean error on time prediction (in seconds), ¢ is imple-
mented using ATS and ¢’ are samples of an event log from a real-world incident
management process.

The approach discussed herein was designed to address a real-world time
prediction problem faced by an Information Technology (IT) organization.
In this organization, the incident management process is supported by the
ServiceNow™ platform, which enables extraction of the event log and a series
of descriptive incident attributes. Because it is an applied experiment, there is
no prior initiative for comparison. To overcome this problem, the selection of
attributes performed by human experts was used as the baseline. The semantic
reasonability of the selected attributes in each case was analyzed in this real-
world incident management process. The results show that only the wrapper-
based solution could outperform human experts.

In summary, our goal is to discover an attribute subset that allows generating
a model capable of minimizing the prediction error of the incident completion
time during its resolution process. Fig. 1 presents an overview of the proposed
strategy. The top of the figure shows the sequence of actions followed to build
an enriched event log used to build the prediction models. The remaining part
of the figure shows the three attribute selection methods explored in this paper:
(i) expert-driven selection [used herein as our baseline for comparison]|, (ii) the
filter with ranking and (4ii) wrappers with two search techniques — hill-climbing
and best-first.

Event log | Descriptive
records | attributes

Data pre-
processing

Enriched
event log

PAIS Data\. L
database extraction

Zx:::] Attribute ATS ATS prediction
K — subset (1) building model (1)

selection

g eT:zZL 2 Attribute ATS ATS prediction
(ranking) subset (2) building model (2)

Werapper selection (hill-climbing / best-first)

N S;gz::m Attribute ATS ATS prediction ATS prediction
(ranking) subset (3) building model (3) model (3)

R |

Fig. 1. Proposed strategy overview
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The contribution of this work is threefold:

1. We present the feasibility of an automatic attribute selection approach used
to improve the performance of prediction models that are sensitive to these
attributes.

2. We confirm through experimental results that automatic methods can out-
perform human experts for a real-world incident management context even
considering the own specific characteristics of such a context.

3. We provide the dataset used in our experiment, containing an event log
enriched with data loaded from a relational database underlying the related
PAIS, which can be used for replicability or other experiments.

The remainder of this paper shows: an overview of concepts related to
attribute selection and annotated transition systems and some related work;
the research method for experimentation, including the strategies for attribute
selection, the application domain and the event log used; the findings of the
experiments conducted; the discussion of such findings; and finally the conclu-
sions.

2 Literature Review and Theoretical Background

This section presents the main concepts related to attribute selection and ATS
as a theoretical basis for the rest of the paper and an analysis of the related
works found in the literature review.

2.1 Attribute Selection

According to Blum and Langley [15], before undertaking automated learning
activities, two tasks are needed to be carried out — deciding which features (or
attributes) to use in describing the concept to be learned and deciding how to
combine such features. Following this assumption, attribute selection is proposed
herein as an essential phase to build prediction models capable of predicting
completion time. The taxonomy of methods for selecting attributes typically
uses three classes filters, wrappers and embedded [14]. A fourth class — heuristic
search — is highlighted by Blum and Langley [15], however, one could say that
this class is an extension of filter methods. In this paper, we apply the filter and
wrapper methods [12,14,15], which are briefly described as follows:

e Filter: filter methods aim to select relevant attributes — those that alone
or together can generate a better performing predictor than that generated
from a set of irrelevant attributes — and remove irrelevant attributes. These
methods are seen as a pre-processing step, seeing that they are applied inde-
pendently and before the learning model chosen. Because of their indepen-
dence, filter methods are often run-time competitive when compared to other
attribute selection methods and can provide a generic attribute selection free
from the behavior influence of learning models. In fact, using filters reduces
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the decision space dimensionality and has the potential to minimize the over-
fitting problem. In this paper, a filter method based on correlation analysis
is applied. Each attribute is individually evaluated based on its correlation
with the target attribute (i.e., the instance completion time).

e Wrapper: in wrapper methods, the attribute selection is carried out through
an interaction with an interface of the learning model, which is seen as a black
box. There is indeed a space of search states (i.e., combinations of attributes)
that needs to be explored using some search technique. Such a search is driven
by the accuracy got with the application of the learning model in each search
state, considering the parameters (or, in the case of this paper, the attributes)
that characterize that search state. In this paper, we apply: two well-known
search techniques — hill-climbing and best-first (described below); ATSs as the
learning model (cf. Sect. 2.2); and Mean Absolute Percentage Error (MAPE)
[16,17] as the metric to evaluate the learning model accuracy, defined as

1 & |F - A
MAPE = — % —_—
n t=zl At

where n is the number of events in the log, F; is the result got with the
predictor for each event of the log and A; is the expected/known prediction
value, which represents the remaining time to complete the process instance
and is calculated from the time the event was logged in until the instance is
completed.

Hill-climbing is one of the simplest search techniques; it expands the current
state, creating new ones, moves to the next state with the best evaluation, and
stops when no child improves the current state. Best-first search differs from hill-
climbing as it does not stop when no child improves the current state; instead,
the search attempts to expand the next node with the best evaluation in the
open list [12].

2.2 Annotated Transition Systems

Using transition systems in process mining was proposed by Aalst et al. [18],
as part of an approach to discovering control-flows from event logs. Then, tran-
sition systems were extended with annotations (given rise to ATS), whose aim
is to add statistical characteristics of a business process. ATSs can be applied
as a predictor of the completion time of a process instance based on the anno-
tated statistical data [3]. According to the authors, ATSs include alternatives
for state representation, allowing to address over-fitting and under-fitting, which
are frequent in prediction tasks.

Briefly, a transition system is defined as the triplet (S, E, T), in which S is
a space of states, F is a set of labeled events and T is the transition relation
such that T'C S x E x S. A state is an abstraction of k events in the event log,
which have occurred in a finite sequence o that is called ‘trace’. ¢ is represented
by a string of symbols derived using abstraction strategies. Five strategies are
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presented by Aalst et al. [18], from which the following two are applied in the
experiments presented herein:

1. Mazimal horizon, which determines how many events must be considered in
the knowledge representation of a state.
2. Representation, which defines three ways to represent knowledge about past
and future at a trace momentum, i.e., per:
e Sequence, recording the order of activities in each state.
o Multiset, ignoring the order and considers the number of times each activ-
ity is performed.
e Set, considering only the presence of activities.

To create the ATS, each state is annotated taking information collected from
all traces that have visited it [3]. For time analysis, for example, this annotation
considers information about the completion time of the instances related to
each earlier trace, i.e., the annotation is carried out in a supervised way. The
information is aggregated in each state producing statistics such as average times,
standard deviation, median times etc. Such annotations allow using ATSs as a
predictor. Thus, predicting the completion time for a running trace referring to
some process instance can be carried out from its current state in the ATS flow.

Berti [7] also applied ATS for prediction, however, with partial and weighted
traces aiming at dealing with changes during the running process. The ATS was
extended through machine learning and enriched with date/time information
and probability of occurrence of activities in the traces, by Polato et al. [8]. As
several factors influence prediction, the view on the need to deal with information
that enriches the ATS context is also used in the approach addressed herein.

2.3 Related Work

Only Hinkka et al. [11] presented a strategy with a purpose similar to the one
presented herein, i.e., choosing the attribute configuration of the input log for
building the predictor. The approach of these authors extracts structural features
from an event log (i.e., activity counting, transitions counting, occurrence order-
ing), submits them to a selection process, and then uses the features selected to
describe process instances. These process instances are used to create categor-
ical prediction models. Different feature selection methods were applied, based
on randomness, statistics, heuristic search and clustering. Among the strategies
used by the authors, recursive elimination — a wrapper method — was the best
performing selection method (84% of accuracy); however, it was one of the most
expensive in terms of time response. Despite the similarity, this work is not
directly comparable with ours since these authors work with a simple binary
classification scenario whereas we work with numerical prediction, i.e., a contin-
uous scenario. Moreover, our strategy does not use recursive elimination as them
as our search method is a simple forward selection.

Alternatively, Evermann, Rehse and Fettke [19] and Tax et al. [20] also
worked with the choice of the configuration of the predictor input log, but implic-
itly and automatically when using deep learning. Prediction is done directly from
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the descriptions of process instances, i.e., no process model is used or discovered
as a basis for prediction. As a disadvantage of this type of approach, it is hard to
explain the reasonableness of the predictions made when considering the process
context, i.e., the implicit extraction of features does not allow easily interpreting
the information leading to the results of the prediction. As a result, this type
of solution hinders the use of the selected attributes for process improvement
purposes.

3 Research Method

This section details the proposed solution and the basis for the experiments.

3.1 Attribute Selection Strategies

An overview of the proposed strategy for attribute selection is presented in Fig. 1
and detailed in this section.

For the first strategy — the expert-driven selection, no standard procedure
was followed, since it fully depends on human judgment. This judgment highly
depends on the application domain, among other factors. In the next section, the
rationale specifically followed for the case used in our experiment is presented.

For the second strategy — the filter with ranking, stable concepts of special-
ized literature were followed [12,14,15]. Ranking was applied as pre-processing,
as suggested by Kohavi and John [12], to create a baseline for attribute selec-
tion, regardless of the prediction model in use. The ranking should be created
through a variance analysis by correlating the independent variables (i.e., the
descriptive attributes) and the dependent variable (i.e., the prediction target
attribute). Since most of the descriptive attributes are categorical in this con-
text, the statistic n? (Eta squared) should be applied, as explained by Richardson
[21]. From the ranking results, the filter method should be executed n times by
combining the attributes as follows: {15t}; {15¢ 274}, {15t 2nd . pth}

For the third strategy — the wrapper with hill-climbing and best-first [12],
a forward selection mode? was applied. The search space is composed of all com-
binations of the attributes pre-selected by the filter with ranking strategy. Each
one of the combinations represents a state in such a space, whose quality measure
is calculated as the predictive power achieved by the predictor generated with
the attribute subset associated with this model. For real problems, an exhaus-
tive search procedure is probably unfeasible, and hence using heuristic search
procedures is justified. Algorithms 1 and 2 show, respectively, how hill-climbing
and best-first searches are carried out for our attribute selection strategy. The
building function build-ATS() of an ATS and the evaluation function eval() of
the ATS use, respectively, a training log excerpt (esrqin) and a testing log excerpt
(etest), which represent disjoint subsets of the original event log (e) generated in

2 In the forward selection, the search initial point is a singleton attribute subset to
which one new attribute is incorporated at each new step in the search.
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Algorithm 1. Hill-climbing technique
1: input: set of attributes [, event log e;
2: output: canonical subset of attributes lfinai;

3:

4: lfinal — @7

5: ATSbest — @;

6: repeat

7 lexpand — U — lfinal;

8: ATS — 0;

9: for i =1 to len(lexpand) do > State expansion
10: att-set[i] — concat (Ifinat, lexpandli]);

11: ATS[i] « build-ATS (att-setli], etrain);

12: tbest < arg-min (eval (ATS, etest));

13: if (eval(ATSpest,etest) > eval(ATS[ipest],erest)) then
14: ATSpest « ATS[ivest];

15: lfinal < att-set[ipest);

16: until (Ifima # att-set[ipest]) or (lewpana = 0)

17: return lfina

the cross-validation procedure. The function eval() returns the MAPE for the
ATS under evaluation and is used for a single ATS and a set of ATSs. The min-
imization function, arg-min(), applied to the ATS evaluation, returns the index
of the model that produces the lowest MAPE when applied to the testing log.
In Algorithm 2, there are two lists (open and closed) that maintain the states
that represent the sets of attributes generated by the search and are used by the
function build-ATS() to create the ATSs related to each state under evaluation.
The search is interrupted when the maximum expansion counter is achieved.

For all selection methods, ATS is applied as the prediction model responsible
for generating the estimates of the incident completion times, including to act
as a state evaluator in the wrapper search spaces. For practical purposes, the
ATS can be generated from an attribute subset which properly describes the
currently completed incidents. From this point, ATS can be applied to predict
the completion time of new incidents at run-time.

3.2 Application Domain

Operating areas in organizations are often complex, requiring a constant search
for optimization to become more stable and predictable. In IT, this optimiza-
tion is sought by adopting good practice frameworks such as the Information
Technology Infrastructure Library (ITIL) [22]. ITIL covers several IT service
management processes, from which incident management is the most commonly
used one [23]. The incident management process addresses actions to correct
failures and restore the normal operation of a service, as soon as possible, to
minimize the impact on business operations [22]. Systematizing this business
process allows defining monitoring indicators, including the completion time for
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Algorithm 2. Best-first technique

1: input: set of attributes [, event log e, maximum # expansion movements with no
improvement max_expcount;
: output: canonical subset of attributes lfinqi;

2
3:
4: lfinal — ®§

5: lclosed—states — 07

6: lopenfsta,tes — expand'State( @7 lclosedfstatesyl )7
7: ATSpest < 0;

8: repeat

9: ATS «— build-ATS(lopenfstates, etmin);

10: tbest < arg-min (eval (ATS, etest));

11: currentstate < lopen—states|[ibest];

12: lopenfstates — lopenfstates — currentstate;

13: lelosed—states < lclosed—states + currentstate;

14: if (eval(ATSpest,etest) > eval(ATS[ipest],test)) then
15: ATSpest — ATS[ivest];

16: lfinal < att-set(currentstate);

17: expcount «— 0O;

18: else

19: inc(expcount);

20: lewpand — expand-state( currentstate, leiosed—statess! );
21: lopenfstates — COTLCGt( lopenfstat657lezpand )7

22: until (expcount < maz_expcount) or (lopen—states = 1)
23: return lyina

incident resolution (also known as ‘ticket completion time’), one of the most
important indicators for this process [23].

When an incident occurs, it is identified and reported by a caller. After-
ward, a primary expectation is to know the incident completion time. The usual
estimates follow ITIL best practices, which are based on some specific incident
attributes like urgency, category etc. This approach is general and inaccurate
since it aggregates many situations and common target completion times. As the
process evolves from the identification and classification stage to the initial sup-
port, investigation and diagnosis, some attributes are updated, and new ones are
added. This can usually lead to a number close to 100 attributes, depending on
the scope of the system implementation. Considering this whole scenario, there
is an open issue related to providing assertive estimates on incident completion
time that is not adequately solved by simple statistical methods. Incident man-
agement systems commonly store descriptive information of process instances
and audit information about the history of updates of the process in progress.
Combining both types of information allows executing a detailed step-by-step
process evaluation and hence deriving estimates for each recorded event.

ServiceNow™ is a proprietary platform in which IT process management
is implemented regarding the ITIL framework. In this platform, the incident
process management involves three actors in five basic process steps. The actors
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are: caller, affected by the unavailability or degradation of a service, caused by an
incident; service desk analyst, responsible by registering and validating the data
provided by the caller and executing the initial procedures to treat the incident;
and support analysts, the group of agents responsible for further analyzing the
incident and its causes and proposing workaround solutions to be applied until
the service is reestablished or definitive solutions are found. The five basic process
steps are: incident identification and classification, initial support, investigation
and diagnosis, resolution and reestablishment, and closing.

3.3 Enriched Event Log

An enriched event log of the incident management process was extracted from
an instance of the ServiceNow™ platform used by an IT company?. Information
was anonymized for privacy reasons. This enriched event log is composed of data
gathered from both the audit system and the platform’s relational database:

e Event log records: ServiceNow™ offers an audit system that records data
referring to events related to all data maintained by the system, including
incident-related data. The main data recorded are event identifier, old data
value, new data value, update timestamp and responsible user. Audit data
was used to generate the main structure of the event log records to be mined.
We considered 12 months (Mar-2016 to Feb-2017), totaling 24,918 traces and
141,712 events. Pre-processing was used to filter out the noise and organize
audit records in an orderly sequence compatible with an event log format.
Two audit log attributes were derived from this audit system sys_updated_at
and sys_updated_by.

e Incident descriptive attributes: ServiceNow™ has 91 incident descrip-
tive attributes. Some are worthless for process mining, have missing or incon-
sistent data, or represent unstructured information (i.e., text), whose use is
outside our scope. After removing such unnecessary attributes, the final set of
descriptive attributes comprised 34 attributes (27 categorical, 3 numeric and
4 timestamp ones). These attributes include the attribute closed_at, which is
used as the basis for calculating the dependent variable for prediction.

An excerpt from the enriched event log is shown in Tablel. It refers to
one incident (INCO001) and contains: one audit attribute (sys_updated_at) and
the other four are descriptive attributes (number, incident_state, category and
assignment_group).

Statistical data on the enriched event log is presented in Table2. A well-
defined behavior for the incident management process is observed, as most inci-
dents (75%) go through up seven updates, 50% go through up five updates and
on average six updates are needed to the total of incidents. There are some out-
liers, with 58 as the maximum number of updates for one incident. Regarding
time (in days), the behavior resembles an exponential distribution.

3 Available at http://each.uspnet.usp.br/sarajane/?page_id=12.
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Table 1. Incident enriched event log excerpt

Number | incident_state | sys_updated_at | Category | assig._group
INCO001 | New 3/2/2016 04:57 | Internet | Field service
New 3/2/2016 16:52 | Internet | Field service
Active 3/2/2016 18:13 | Internet | Field service
Active 3/2/2016 19:14 | Internet | Field service

Awaiting UI

3/2/2016 19:15

Internet

Field service

Awaiting Ul

3/3/2016 11:24

Internet

Field service

Awaiting UI

3/3/2016 12:33

Internet

Field service

13

Awaiting UI | 3/3/2016 12:43 | Internet | Field service
Active 3/3/2016 12:43 | Internet | Field service
Active 3/3/2016 12:54 | Internet | Field service
Active 3/3/2016 12:57 | Internet | Inf. security
Active 3/3/2016 13:14 | Internet | Inf. security
Active 3/3/2016 13:16 | Internet | Service desk
Active 3/3/2016 19:57 | Internet | Field service
Active 3/4/2016 10:56 | Internet | Field service
Resolved 3/4/2016 11:02 | Internet | Field service
Closed 3/9/2016 12:00 | Internet | Field service

Table 2. Enriched event log statistics: per incident/day

1%tQ. | 2"4Q. | 3"4Q. |Max | Mean | St. dev.
Per incident | 3 5 7 58 6 3.67
Per day 0.01 |0.40 |5.29 |336.21|6.67 |21.20

4 Research Findings

This section presents the results of the experiments. The incident management
process was used as the application domain. The enriched event log was split into
5 folds (i.e., 5 sublogs) to allow cross-validation on the ATS prediction models.
The ATS accuracy is given in terms of the mean and the median MAPE [16] of
the incident completion time taking all incidents in the test fold that are passing
through the ATS states. Sojourn time is also considered. The ATS completeness
(or non-fitting) was evaluated by accounting how many records do not have a
corresponding state in the ATS. As a baseline for comparison, a prediction model
based on human expertise-knowledge was first created.

Three experiments were conducted as described in Sect. 3. A set of ATSs was
generated according to these parameter configurations:
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e Enriched event log: the enriched event log was sampled by randomly cre-
ating two subsets, one with 8,000 (A) and another with 24,000 (B) incidents
— with A C B.

e Maximum horizon: 1, 3, 5, 6, 7 and ‘infinite’ were used. The value 1 explores
the simpler case with only the last event per incident trace; 3, 5, 6 and 7
explore the most frequent behaviors in this incident management process
according to the statistics ‘by incident’ reported in Table2; and, ‘infinite’
explores all events per incident trace.

e State representation: the three options described in Sect. 2.2 were used,
i.e., set, multiset and sequence [18].

4.1 Experiment #1 — Expert-Driven Selection

First, attribute selection was driven by information about the domain held by
human experts. According to ITIL best practices, to start the incident man-
agement, the caller should provide the initial incident information, which is
complemented by the service desk agent, with information related to the inci-
dent category and priority (defined by impact and urgency). Additional informa-
tion (attachments and textual descriptions) is also provided to help the support
agents who need to act on the next stage, which is out of the scope of this work.
Based on these practices, incident_state, category and priority were considered
the most adequate attributes to correctly define the process model in ATS: inci-
dent_state reports the stage at which the incident is; category shows the type
of service the incident belongs to; and priority determines the focus requested
by the business. For this scenario, 18 ATSs were generated and used as com-
pletion time predictor, for the enriched event log sample with 24,000 incidents,
varying the horizon and state representation parameters. The results are shown
in Table3. The best results were got with horizon 3 and state representation
sequence.

Table 3. Experiment #1 — average prediction results. Used attributes: incident_state,
category and priority. Log sample: 24,000 incidents. Metric: MAPE (Mean and
Median). NF = % of non-fitting incidents. Bold: best results.

Max Hor | Set Multiset Sequence
Mean | Med NF | Mean | Med NF | Mean | Med NF
113.93 | 88.29/0.22| 113.93| 88.29/0.22|113.93 | 88.29 |0.22
106.93| 77.46/0.98| 91.35| 75.87|1.23| 72.36| 63.66 1.38
119.18 | 109.28 | 1.64 | 177.05| 162.08 2.95|126.12 | 104.67 | 3.38
183.52| 115.59 |1.83 | 122.54| 98.74|3.72|102.73 | 84.01 | 4.41
93.22| 75.11/1.95|1190.87 | 1184.75 | 4.44 | 107.58 | 98.04 |5.48
Inf. 1146.57 | 1123.24 | 2.31| 92.12| 75.21 8.03| 88.32 | 72.98 |9.00

N o oW
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Table 4. The 15 descriptive attributes with the highest correlation with the dependent
variable and respective n values. Attribute descriptions are provided in the appendix.

Order | Attribute n Order | Attribute n
1t | Caller 0.54 9" | Active 0.25
ond Assigned_to 0.37|10*" | Priority_confirmation | 0.24
3rd Assignment_group | 0.35 | 11'* | Created_by 0.21
4th | Symptom 0.33 12" | open_by 0.20
5th Sys_updated_by 0.33 13" | Location 0.14
6" | Incident state 0.32 14" | Made_SLA 0.14
7th Subcategory 0.32|15*" | Knowledge 0.12
gth Category 0.27

4.2 Experiment #2 — Filter with Ranking

Second, attribute selection was driven by filter using a ranking strategy. Fol-
lowing the strategy presented in Sect.3, 15 attributes with the highest corre-
lation with the dependent variable (i.e., the prediction target attribute, based
on the attribute closed_at) were selected to compose the ranking. The vari-
ance analysis was carried out on the entire enriched event log. The attributes
and correlation scores are listed in Table4. These results showed that the
descriptive attributes with the highest correlation with the dependent variable
are those related with associated resources of the incident management pro-
cess. Considering the ranking results, the filter method was executed by com-
bining the attributes as follows: {Caller(1%%)}; {Caller(1%!), Assigned_to(2"?%)};
i {Caller(1%), Assigned_to(2"?), . .., Knowledge(15'")}. For this scenario, 18
ATSs were generated for each attribute subset and used as completion time pre-
dictor, for the enriched event log sample with 8,000 incidents, varying the max-
imum horizon and the state representation parameters. The results for each
attribute subset are shown in Table5. The best results were got with hori-
zon 1 and the subsets {Caller, Assigned_to} and {Caller, Assigned_to, Assign-
ment_group}, regardless of the state representation.

As a second part of experiment #2, aiming to compare the prediction results
got through the ATS models generated using these two best ranked attribute
subsets with the results got in experiment #1, two new set of ATSs were gener-
ated using as attributes those of best results in Table 5; however, using in this
case the enriched event log sample with 24,000 incidents. The results are shown
in Table6. The results with the ranked attribute subsets were slightly worse
than those got in experiment #1. By checking these results, one can notice
that resource-related attributes often impair generating the prediction model,
i.e., such attributes do not reflect the process behavior with the same fidelity
that the control attribute do (i.e., the incident state). Regarding non-fitting, an
explanation for the poor results could be the frequent changes in the values of
the human resource assigned to solve different incidents.
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Table 5. Experiment #2 — average prediction results. Used attributes: selected by
filter. Log sample: 8,000 incidents. Metric: MAPE (Mean and Median). NF=% of
non-fitting incidents. Bold: best results.

Att|Max |Set Multiset Sequence
Hor
Mean | Med NF Mean | Med NF Mean | Med NF

1 |Inf. 160.22 140.99 [20.77 |114.62 |109.79 |30.95 |114.62 |109.79 |30.95
2 |1 110.98 90.81/59.89/110.98| 90.81|59.89/110.98 90.81 59.89
3 112.27 | 88.99/63.92|112.27| 88.99|/63.92|112.27| 88.99 63.92
4 129.41 | 98.90 |72.22 |123.72 | 96.08 |72.72 [122.83 | 95.11 |72.73
5 |4 128.71 | 98.52 |72.89 |128.36 | 98.11 |73.08 |128.49 | 98.15 |73.08
6 |Inf. 129.25 [100.28 |73.39 |133.72 |102.29 |73.51 |133.72 |102.29 |73.51
7 |Inf. 146.08 117.20 |73.58 |129.63 | 98.36 |73.70 |129.63 | 98.36 |73.70
8 |Inf. 143.84 114.87 |73.66 |129.42 | 98.06 |73.77 |129.42 | 98.06 |73.77
9 |Inf. 143.84 114.87 |73.66 |129.42 | 98.06 |73.77 |129.42 | 98.06 |73.77
10 |Inf. 130.46 101.07 |73.67 |133.72 |101.61 |73.72 |139.35 |107.19 |73.72
11 |3 135.57 1103.93 |73.65 |133.30 101.25 |73.67 |134.97 |102.96 |73.67
12 |Inf. 147.31 |118.41 |73.76 |130.57 | 99.36 |73.86 |130.57 | 99.36 |73.86
13 |7 127.16 | 97.58 |73.78 |128.37 | 98.20 |73.87 |128.28 | 98.16 |73.87
14 |Inf. 124.96 | 96.09 |73.78 |126.14 | 96.85 |73.88 |126.14 | 96.85 |73.88
15 |Inf. 125.70 | 96.75 |73.78 |130.25 | 98.98 |73.88 |130.25 | 98.98 |73.88

Table 6. Experiment #2 — average prediction results. Used attributes: best attribute
subsets selected by filter. Log sample: 24,000 incidents. Metric: MAPE (Mean and
Median). NF =% of non-fitting incidents. Bold: best results.

Max Hor | Set Multiset Sequence

Mean ‘Med ‘NF Mean ‘Med ‘NF Mean ‘Med ‘NF
Attribute subset: {caller, assigned_to}
208.61|196.4230.10(208.61 |196.42 |30.10 |208.61|196.42|30.10
102.09| 89.17|32.48| 86.41 | 72.50 |33.87 | 98.69| 84.3733.90
90.73| 76.30/33.31| 69.69| 57.85 35.67| 80.97| 69.10/35.73
292.51|280.4233.44| 77.53 | 65.66 |36.15 | 82.78| 70.92|36.20
171.55/159.95|33.51| 91.22 | 79.66 |36.41 |103.14| 90.27|36.46
Inf. 249.06|238.05|33.60| 96.66 | 85.85 [36.73 | 78.82| 67.97|36.76
Attribute subset: {caller, assigned_to, assignment_group}
80.17| 67.87|34.04| 80.17 | 67.87 34.04 | 80.17| 67.87|34.04
93.16| 80.65|37.48/102.64 | 86.15 38.58 |131.73|118.08|38.67
91.34| 80.96|39.22| 76.21| 64.98/40.67| 86.20| 74.89|40.75
85.55| 74.76/39.58| 94.38 | 83.01 41.04 | 78.05| 66.67|41.11
96.99| 85.00/39.76/102.01 | 86.35 41.19 |105.66| 94.33|41.25
Inf. 85.96| 74.00/40.03| 81.33 | 70.36 141.33 | 79.76| 68.76|41.36

N | O oUW =
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Table 7. Experiment #3 — average prediction results. Used attributes: Best attributes
selected by wrapper (incident_state, location). Log sample: 8,000 incidents. Metric:
MAPE (Mean and Median). NF =% of non-fitting incidents. Bold: best results.

Max Hor | Set Multiset Sequence
Mean | Med NF | Mean | Med |NF Mean | Med INF

1 501.18 |450.23 | 0.88 | 501.18 |450.23 | 0.88 |501.18 | 450.23 | 0.88
3 528.98 |522.63 |1.92 |497.56 |475.72| 2.70| 92.71| 64.01| 2.96
5 185.12 | 66.39 |2.51 |113.64| 84.77| 5.71|143.45| 72.07| 6.60
6 33.90 | 19.51 |2.58 | 43.02| 23.74 6.91| 33.85| 22.87| 8.19
7 17.82 | 10.13|2.69| 21.36| 15.19| 8.07| 25.07| 15.46| 9.74
Inf. 60.69 | 42.95 |2.92 | 251.79 230.73 | 14.01 | 239.53 | 218.17 | 15.50

4.3 Experiment #3 — Wrappers with Hill-Climbing and Best-First

Last, the attribute selection was driven by the wrapper method using a forward
selection mode with the hill-climbing and best-first search techniques [12] (cf.
Sect. 3). The search space is composed of all combinations of the 15 attributes
pre-selected by the filter with ranking strategy, i.e., the attributes in Table4.
Thus, the search space had 2'° = 32, 768 states, taking the 18 ATSs generated
for each state, the range of the horizon and the state representation parameters.
As stated before, using heuristic search procedures is justified in this case. The
wrapper method was carried out on the enriched event log sample with 8,000
incidents. For the best-first search technique, the maximum number of expansion
movements with no improvement was set to 15. The prediction results for the
ATSs generated for this scenario are listed in Table 7. Both search techniques
resulted in selecting the same best attribute subset, which are {incident_state,
location}. Despite the high agreement between the two search techniques, some
information can be extracted from their execution processes:

e Hill-climbing: the stopping criterion was reached after the third expansion
movement; 42 states of the search space were explored; the mean and median
for all ATSs generated in the state representation set were on average 146.80
and 103.76, respectively; and the average for non-fitting was 8.97.

e Best-first: 17 expansion movements were done; 172 states of the search space
were explored; in average, the mean and median statistics for all ATSs gener-
ated in the state representation set were 114.96 and 89.68, respectively; the
average for non-fitting was 36.27.
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The best results were got with horizon 7 and the state representation set;
however, the results got with the other state representations for the same horizon
are good as well. These results are significantly better than those results got by
the filter and better in terms of mean and median than those got by the expert-
driven selection. Overall, the low non-fitting results are promising.

As a second part of experiment #3, with the purpose of comparing the pre-
diction results got with the ATS models generated with these attribute subsets
selected by wrapper with the results got in experiments #1 and #2, a new set of
ATSs was generated using as parameters those of best results in Table 7, however
using now the enriched event log sample with 24,000 incidents. The results are
shown in Table8 and it is noticed that the best results (maximum horizon set
to 5) overcome the best results got in the previous experiments considering the
MAPE evaluations. The results for MAPE are less than half of those measures
got by expert-driven selection keeping non-fitting values at the lowest level.

4.4 Summarized View

Table 9 shows information detailing the average number of states on each set of
ATSs created in experiment instances. One can check that best results (experi-
ments #1 and #3) for MAPE also have the small number of states when com-
pared with experiment #2.

Table 8. Experiment #3 — average prediction results. Used attributes: best attribute
subsets selected by wrapper. Log sample: 24,000 incidents. Metric: MAPE (Mean and
Median). NF =% of non-fitting incidents. Bold: best results.

Max Hor | Set Multiset Sequence

Mean | Med NF | Mean | Med NF | Mean | Med | NF

138.60 | 97.59 |0.35 |138.60 | 97.59 |0.35 | 138.60 | 97.59 |0.35

107.69 | 52.48 1 0.85 | 69.02 | 47.17 |1.09 | 65.57 |37.25 |1.22
50.45| 24.49|1.11| 41.90| 29.35|2.30| 35.09|27.28 2.74
69.32 | 48.98 |1.13 | 59.71 52.16 [2.95 | 57.13 |47.21 | 3.57

132.81 |110.51 |1.16 |153.96 |114.83 |3.57 | 68.53 |56.39 |4.36

Inf. 66.75 | 46.16 |1.24 | 43.02 | 35.86 |6.51 | 70.54 |38.26 |7.43

~N| | Ot W |~
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Table 9. Consolidated view of the numbers of ATSs’ states. Log sample: 24,000 inci-
dents. Metrics: AVGS = AVErage number of States in the ATS; SD = Standard Devi-
ation. Bold: refers to the set of ATSs with the best performances.

Max Hor | Set Multiset Sequence

AVGS |SD |AVGS |SD | AVGS |SD
Attribute subset: {incident_state, category, priority} — Exp. #1
1 648.8 | 3.11 648.8 3.11 648.8 3.11
3 2428.0 |13.01 | 3734.0 | 24.44 | 4139.6| 28.89
5 3273.0 |16.30 | 7895.4 | 50.66 | 9071.2 | 57.39
6 3456.8 | 15.27 | 9853.2 | 63.19 |11501.4 | 65.77
7 3535.0 | 14.10 | 11678.0 | 73.84 |13711.4 | 65.17
Inf. 3660.6 | 20.69 |18423.4 |115.99 |19653.4 | 84.88
Attribute subset: {caller, assigned_to} — Exp. #2
1 15297.4 |67.56 | 15297.4 | 67.56 |15297.4 | 67.56
3 18814.4 |92.89 |40474.4 |142.09 |41558.0 |147
5 17658.6 |76.79 | 52537.2|150.95 | 54034.4 |157.18
6 17343.0 |72.94 |56218.4 |160.01 |57671.0 |166.91
7 17062.6 |69.26 |58919.6 |169.46 |60287.6 |173.83
Inf. 16205.6 |62.87 |66131.8 |171.75 |66151.2 |170.66
Attribute subset: {caller, assigned_to, assignment_group} — Exp. #2
1 24305.6 | 58.72 |24305.6 | 58.72 | 24305.6 | 58.72
3 34664.4 | 68.94 |54123.0 |135.33 | 55942.2 |141.48
5 31740.2 | 65.22 |64243.8 |166.85 66125.2 | 173.65
6 30425.0 | 70.68 |66610.8 |175.79 1 68193.4 |189.58
7 29282.6 | 58.83 |68037.2 |179.03 69336.0 | 191.92
Inf. 26093.6 | 49.53 | 70795.0 |197.57 | 70820.6 |201.09
Attribute subset: {incident_state, location} — Exp. #3
1 901.2 |14.13 901.2 | 14.13 901.2 | 14.13
3 2322.6 |25.16 | 3586.0 | 34.62 | 3939.0 | 36.61
5 2675.2|27.10| 6950.4 | 44.95 | 7972.6| 52.66
6 2697.4 | 25.54 | 8481.2 | 41.61 | 9881.6 | 47.67
7 2706.2 | 27.88 | 9838.8 | 36.38 | 11590.0 | 39.82
Inf. 2634.8 |26.03 | 15901.8 | 78.16 |17259.6 | 69.63

5 Discussion of Findings

With the analysis of the results, we could verify that the expert-driven and the
filter with ranking strategies allow us building models with similar predictive
power. However, when checking the model fitting capabilities, some differences
(1.38 and 35.67, respectively) are observed between them for the best results.
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Such differences were caused because of the different process perspectives rep-
resented by the attribute subset used in each case. For the first case, the ATS
generation was driven by incident descriptive attributes recommended by ITIL
best practices suggested by human experts for incident clustering and routing;
then, the resulting model could accurately represent the process. For the second
case, the set of attributes automatically selected to build the ATS represents
organizational and resource perspectives of the incident management process;
what means that, in this case, the ATS captured how teams (i.e., people) act
to support user requests and became highly specialized and incapable of gener-
alizing the real process behavior. This happens because the attributes selected
represent information that presumably changes frequently (‘caller’ and ‘technical
people’ in charge of the incident). The MAPE results for experiment #1 were
compared to those got for experiment #2, using the paired Wilcoxon test. This
test showed that there is no statistical difference among the distributions of the
MAPE values as with py,qiue = 0.3125 the null hypothesis for equal distributions
cannot be rejected.

The wrapper-based experiment achieved an average MAPE measure (24.49)
that is 38.47% of the average MAPE achieved in the expert-driven experiment.
The model non-fitting continued in an even lowest level (1.11%) as that got in
the first one. The paired Wilcoxon statistical test was applied to compare the
MAPE results got for experiment #1 with those got for experiment #3. The null
hypothesis for equal distributions was rejected with p,que = 0.0312. This result
allows affirming that the attribute selection got with the wrapper is better than
the expert’s choice in terms of accuracy and generalization (i.e., low non-fitting)
in this incident management process.

The attribute subset selected by wrapper unifies expert knowledge with an
organizational perspective, which produced a completion time predictor with
high accuracy and low non-fitting rates. The results were similar for hill-climbing
and best-first search techniques. This behavior has already been observed in
experiments executed by Kohavi and John [12], in which, for diverse types of
datasets, additional search effort did not produce better results.

6 Conclusions

Using the wrapper method could select a set of attributes that supported a signif-
icant improvement in the accuracy of ATS as a prediction model when compared
to both the filter and the expert knowledge. Furthermore, such a search process
points out that the maximum horizon and distinct types of state representations
have a high influence on the prediction model results. This approach has the
potential as a useful pre-processing step before applying other prediction meth-
ods besides the ATS method used in this study. These results are important
when considering a business process scenario in which different actors need to
collaborate for its execution, generating complexity and unpredictability of the
completion time, for example.

This paper focuses on a specific application domain to illustrate that the
proposed strategy is a way to solve a generic problem. However, while it is a
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promising heuristic procedure, there is no guarantee that the search will yield
satisfactory results for all applications in similar scenarios. As the proposed
approach performs a search in the event log derived from a specific process, it
implements an inductive reasoning mechanism dependent on the properties of
such an underlying process, regardless of the chosen prediction technique. As a
result, for each specific case of application, different results are likely to be got.

In addition, it is still necessary to verify the influence of outliers through-
out the process (search and prediction) as the results got in the experiments
presented some varying degree. Using other search methods (such as genetic
algorithms) or other options to build process model-based predictors (such as
Petri nets or variations of ATSs), applied on benchmark event logs for compar-
ison, are points for exploration.

Acknowledgments. This work was funded by the Sado Paulo Research Foundation
(Fapesp), Brazil; grants 2017/26491-1 and 2017/26487-4.

Appendix

A brief description of the 15 attributes listed in Table4 is presented in Table 10.

Table 10. Description of the 15 attributes used in the experiment

ID|Attribute Description

1 |caller Identifier of the user affected

2 |incident_state Eighth levels controlling the incident management process transitions
from opening until closing the case

3 |assigned_-to Identifier of the user in charge of the incident

4 |assignment_group Identifier of the support group in charge of the incident

5 |symptom Description of the user perception about the service availability

6 |sys_updated_by Identifier of the user who updated the incident and generated the
current log record

7 |subcategory Second level description of the affected service (related to the first level
description, i.e., to category)

8 |category First level description of the affected service

9 |active Boolean attribute indicating if the record is active or closed/canceled

10 | priority_confirmation | Boolean attribute indicating whether the priority field has been
double-checked

11 | created Incident creation date and time

12 | open_by Identifier of the user who reported the incident

13 |location Identifier of the location of the place affected

14 |made_SLA Boolean attribute that shows whether the incident exceeded the target
SLA

15 | knowledge Boolean attribute that shows whether a knowledge base document was

used to resolve the incident
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