Abstract
Because of modern societies’ dependence on industrial control systems, adequate response to system failures is essential. In order to take appropriate measures, it is crucial for operators to be able to distinguish between intentional attacks and accidental technical failures. However, adequate decision support for this matter is lacking. In this paper, we use Bayesian Networks (BNs) to distinguish between intentional attacks and accidental technical failures, based on contributory factors and observations (or test results). To facilitate knowledge elicitation, we use extended fishbone diagrams for discussions with experts, and then translate those into the BN formalism. We demonstrate the methodology using an example in a case study from the water management domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Asllani, A., Ali, A.: Securing information systems in airports: a practical approach. In: 2011 International Conference for Internet Technology and Secured Transactions (ICITST), pp. 314–318. IEEE (2011)
Ben-Gal, I., Ruggeri, F., Faltin, F., Kenett, R.: Bayesian networks. Encyclopedia of statistics in quality and reliability (2007)
Chen, G., Yu, H.: Bayesian network and its application in maize diseases diagnosis. In: Li, D. (ed.) CCTA 2007. TIFIP, vol. 259, pp. 917–924. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-387-77253-0_22
Chockalingam, S., Hadžiosmanović, D., Pieters, W., Teixeira, A., van Gelder, P.: Integrated safety and security risk assessment methods: a survey of key characteristics and applications. In: Havarneanu, G., Setola, R., Nassopoulos, H., Wolthusen, S. (eds.) CRITIS 2016. LNCS, vol. 10242, pp. 50–62. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71368-7_5
Chockalingam, S., Pieters, W., Teixeira, A., van Gelder, P.: Bayesian network models in cyber security: a systematic review. In: Lipmaa, H., Mitrokotsa, A., Matulevičius, R. (eds.) NordSec 2017. LNCS, vol. 10674, pp. 105–122. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70290-2_7
Curiac, D.I., Vasile, G., Banias, O., Volosencu, C., Albu, A.: Bayesian network model for diagnosis of psychiatric diseases. In: Proceedings of the ITI 2009 31st International Conference on Information Technology Interfaces, pp. 61–66. IEEE (2009)
Darwiche, A.: Bayesian networks. Found. Artif. Intell. 3, 467–509 (2008)
Desai, M.S., Johnson, R.A.: Using a fishbone diagram to develop change management strategies to achieve first-year student persistence. SAM Adv. Manag. J. 78(2), 51 (2013)
Doggett, A.M.: Root cause analysis: a framework for tool selection. Qual. Manag. J. 12(4), 34–45 (2005)
Endi, M., Elhalwagy, Y., et al.: Three-layer PLC/SCADA system architecture in process automation and data monitoring. In: 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), vol. 2, pp. 774–779. IEEE (2010)
Estabragh, Z.S., et al.: Bayesian network modeling for diagnosis of social anxiety using some cognitive-behavioral factors. Netw. Model. Anal. Health Inform. Bioinform. 2(4), 257–265 (2013)
GlobalWater: Global water level sensor - wl400 product manual (2009). http://www.globalw.com/downloads/WL400/WL400manual.pdf
González-López, J., et al.: Development and validation of a Bayesian network for the differential diagnosis of anterior uveitis. Eye 30(6), 865 (2016)
Grimvall, G., Holmgren, Å., Jacobsson, P., Thedéen, T.: Risks in Technological Systems. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-84882-641-0
Henrion, M.: Practical issues in constructing a Bayes’ belief network. arXiv preprint arXiv:1304.2725 (2013)
Huang, Y., McMurran, R., Dhadyalla, G., Jones, R.P.: Probability based vehicle fault diagnosis: Bayesian network method. J. Intell. Manuf. 19(3), 301–311 (2008)
Ilie, G., Ciocoiu, C.N.: Application of fishbone diagram to determine the risk of an event with multiple causes. Manag. Res. Pract. 2(1), 1–20 (2010)
Ishikawa, K., Ishikawa, K.: Guide to Quality Control, vol. 2. Asian Productivity Organization, Tokyo (1982)
Jianhui, L., Zhang, J., Mingdi, J.: Application of BN in the fault diagnosis of brake failure system. Appl. Mech. Mater. 602–605, 1684–1688 (2014)
Kahn Jr., C.E., Roberts, L.M., Shaffer, K.A., Haddawy, P.: Construction of a Bayesian network for mammographic diagnosis of breast cancer. Comput. Biol. Med. 27(1), 19–29 (1997)
KasperskyLab: Five myths of industrial control systems security (2014). https://media.kaspersky.com/pdf/DataSheet_KESB_5Myths-ICSS_Eng_WEB.pdf
Kipersztok, O., Dildy, G.A.: Evidence-based Bayesian networks approach to airplane maintenance. In: Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN 2002, vol. 3, pp. 2887–2892. IEEE (2002)
Knowles, W., Prince, D., Hutchison, D., Disso, J.F.P., Jones, K.: A survey of cyber security management in industrial control systems. Int. J. Crit. Infrastruct. Prot. 9, 52–80 (2015)
Korb, K.B., Nicholson, A.E.: Bayesian Artificial Intelligence. CRC Press, Boca Raton (2010)
Kwan, M., Chow, K.-P., Lai, P., Law, F., Tse, H.: Analysis of the digital evidence presented in the Yahoo! Case. In: Peterson, G., Shenoi, S. (eds.) DigitalForensics 2009. IAICT, vol. 306, pp. 241–252. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04155-6_18
Kwan, M., Chow, K.-P., Law, F., Lai, P.: Reasoning about evidence using Bayesian networks. In: Ray, I., Shenoi, S. (eds.) DigitalForensics 2008. ITIFIP, vol. 285, pp. 275–289. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-387-84927-0_22
Luca, L., Stancioiu, A.: The study applying a quality management tool to identify the causes of a defect in an automotive. In: Proceedings of the 3rd International Conference on Automotive and Transport Systems (2012)
Macaulay, T., Singer, B.L.: Cybersecurity for Industrial Control Systems: SCADA, DCS, PLC, HMI, and SIS. Auerbach Publications, Boca Raton (2016)
Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Ramos, R.F., Saleem, K.: A preeclampsia diagnosis approach using Bayesian networks. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–5. IEEE (2016)
Nakatsu, R.T.: Reasoning with Diagrams: Decision-Making and Problem-Solving with Diagrams. Wiley, Hoboken (2009)
Nikovski, D.: Constructing bayesian networks for medical diagnosis from incomplete and partially correct statistics. IEEE Trans. Knowl. Data Eng. 9(4), 509–516 (2000)
Oniśko, A., Druzdzel, M.J., Wasyluk, H.: Extension of the Hepar II model to multiple-disorder diagnosis. In: Kłopotek, M., Michalewicz, M., Wierzchoń, S.T. (eds.) Intelligent Information Systems, pp. 303–313. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-7908-1846-8_27
Pecchia, A., Sharma, A., Kalbarczyk, Z., Cotroneo, D., Iyer, R.K.: Identifying compromised users in shared computing infrastructures: a data-driven Bayesian network approach. In: 2011 30th IEEE International Symposium on Reliable Distributed Systems, pp. 127–136. IEEE (2011)
Przytula, K.W., Thompson, D.: Construction of Bayesian networks for diagnostics. In: 2000 IEEE Aerospace Conference Proceedings, vol. 5, pp. 193–200. IEEE (2000)
RISI: German steel mill cyber attack (2018). http://www.risidata.com/database/detail/german-steel-mill-cyber-attack
de Ruijter, A., Guldenmund, F.: The bowtie method: a review. Saf. Sci. 88, 211–218 (2016)
Skopik, F., Smith, P.D.: Smart Grid Security: Innovative Solutions for a Modernized Grid. Syngress, Boston (2015)
Wang, J.A., Guo, M.: Vulnerability categorization using Bayesian networks. In: Proceedings of the Sixth Annual Workshop on Cyber Security and Information Intelligence Research, p. 29. ACM (2010)
Wang, X.H., Zheng, B., Good, W.F., King, J.L., Chang, Y.H.: Computer-assisted diagnosis of breast cancer using a data-driven Bayesian belief network. Int. J. Med. Inform. 54(2), 115–126 (1999)
White, A.A., et al.: Cause-and-effect analysis of risk management files to assess patient care in the emergency department. Acad. Emerg. Med. 11(10), 1035–1041 (2004)
Zhao, C.H., Zhang, J., Zhong, X.Y., Zeng, J., Chen, S.J.: Analysis of accident safety risk of tower crane based on fishbone diagram and the analytic hierarchy process. In: Applied Mechanics and Materials. vol. 127, pp. 139–143. Trans Tech Publications (2012)
Zhu, Y., Qian, X.M., Liu, Z.Y., Huang, P., Yuan, M.Q.: Analysis and assessment of the Qingdao crude oil vapor explosion accident: lessons learnt. J. Loss Prev. Process. Ind. 33, 289–303 (2015)
Acknowledgements
This research received funding from the Netherlands Organisation for Scientific Research (NWO) in the framework of the Cyber Security research program under the project “Secure Our Safety: Building Cyber Security for Flood Management (SOS4Flood)”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Chockalingam, S., Pieters, W., Teixeira, A., Khakzad, N., van Gelder, P. (2019). Combining Bayesian Networks and Fishbone Diagrams to Distinguish Between Intentional Attacks and Accidental Technical Failures. In: Cybenko, G., Pym, D., Fila, B. (eds) Graphical Models for Security. GraMSec 2018. Lecture Notes in Computer Science(), vol 11086. Springer, Cham. https://doi.org/10.1007/978-3-030-15465-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-15465-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15464-6
Online ISBN: 978-3-030-15465-3
eBook Packages: Computer ScienceComputer Science (R0)