Skip to main content

A Simple Neural Approach to Spatial Role Labelling

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11438))

Included in the following conference series:

  • 1969 Accesses

Abstract

Spatial Role Labelling involves identification of text segments which emit spatial semantics such as describing an object of interest, a reference point or the object’s relative position with the reference. Tasks in SemEval exercises of 2012 and 2013 propose problems and datasets for Spatial Role Labelling. In this paper, we propose a simple two-step neural network based approach to identify static spatial relations along with the three primary roles - Trajector, Landmark and Spatial Indicator. Our approach outperforms the task submission results and other state-of-the-art results on these datasets. We also include a discussion on the explainability of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bastianelli, E., Croce, D., Basili, R., Nardi, D.: UNITOR-HMM-TK: structured kernel-based learning for spatial role labeling. In: Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), vol. 2, pp. 573–579 (2013)

    Google Scholar 

  2. Chollet, F.: Keras. GitHub repository. https://github.com/fchollet/keras. Accessed 26 Oct 2018

  3. Grubinger, M., Clough, P., Müller, H., Deselaers, T.: The IAPR TC-12 benchmark: a new evaluation resource for visual information systems. In: International Workshop OntoImage, vol. 5 (2006)

    Google Scholar 

  4. Kolomiyets, O., Kordjamshidi, P., Moens, M.F., Bethard, S.: SemEval-2013 task 3: spatial role labeling. In: Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), vol. 2, pp. 255–262 (2013)

    Google Scholar 

  5. Kordjamshidi, P., Bethard, S., Moens, M.F.: SemEval-2012 task 3: spatial role labeling. In: Proceedings of the First Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings of the Main Conference and the Shared Task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation, pp. 365–373. Association for Computational Linguistics (2012)

    Google Scholar 

  6. Kordjamshidi, P., Moens, M.F.: Global machine learning for spatial ontology population. Web Semant.: Sci. Serv. Agents World Wide Web 30, 3–21 (2015)

    Article  Google Scholar 

  7. Ludwig, O., Liu, X., Kordjamshidi, P., Moens, M.F.: Deep embedding for spatial role labeling. arXiv preprint arXiv:1603.08474 (2016)

  8. Mazalov, A., Martins, B., Matos, D.: Spatial role labeling with convolutional neural networks. In: Proceedings of the 9th Workshop on Geographic Information Retrieval, p. 12. ACM (2015)

    Google Scholar 

  9. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  10. Pustejovsky, J., Kordjamshidi, P., Moens, M.F., Levine, A., Dworman, S., Yocum, Z.: SemEval-2015 task 8: SpaceEval. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 884–894 (2015)

    Google Scholar 

  11. Pustejovsky, J., Moszkowicz, J.L., Verhagen, M.: ISO-space: the annotation of spatial information in language. In: Proceedings of the Sixth Joint ISO-ACL SIGSEM Workshop on Interoperable Semantic Annotation, vol. 6, pp. 1–9 (2011)

    Google Scholar 

  12. Roberts, K., Harabagiu, S.M.: UTD-SPRL: a joint approach to spatial role labeling. In: Proceedings of the First Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings of the Main Conference and the Shared Task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation, pp. 419–424. Association for Computational Linguistics (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Ramrakhiyani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramrakhiyani, N., Palshikar, G., Varma, V. (2019). A Simple Neural Approach to Spatial Role Labelling. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds) Advances in Information Retrieval. ECIR 2019. Lecture Notes in Computer Science(), vol 11438. Springer, Cham. https://doi.org/10.1007/978-3-030-15719-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15719-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15718-0

  • Online ISBN: 978-3-030-15719-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics