Abstract
Spatial Role Labelling involves identification of text segments which emit spatial semantics such as describing an object of interest, a reference point or the object’s relative position with the reference. Tasks in SemEval exercises of 2012 and 2013 propose problems and datasets for Spatial Role Labelling. In this paper, we propose a simple two-step neural network based approach to identify static spatial relations along with the three primary roles - Trajector, Landmark and Spatial Indicator. Our approach outperforms the task submission results and other state-of-the-art results on these datasets. We also include a discussion on the explainability of our model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bastianelli, E., Croce, D., Basili, R., Nardi, D.: UNITOR-HMM-TK: structured kernel-based learning for spatial role labeling. In: Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), vol. 2, pp. 573–579 (2013)
Chollet, F.: Keras. GitHub repository. https://github.com/fchollet/keras. Accessed 26 Oct 2018
Grubinger, M., Clough, P., Müller, H., Deselaers, T.: The IAPR TC-12 benchmark: a new evaluation resource for visual information systems. In: International Workshop OntoImage, vol. 5 (2006)
Kolomiyets, O., Kordjamshidi, P., Moens, M.F., Bethard, S.: SemEval-2013 task 3: spatial role labeling. In: Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), vol. 2, pp. 255–262 (2013)
Kordjamshidi, P., Bethard, S., Moens, M.F.: SemEval-2012 task 3: spatial role labeling. In: Proceedings of the First Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings of the Main Conference and the Shared Task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation, pp. 365–373. Association for Computational Linguistics (2012)
Kordjamshidi, P., Moens, M.F.: Global machine learning for spatial ontology population. Web Semant.: Sci. Serv. Agents World Wide Web 30, 3–21 (2015)
Ludwig, O., Liu, X., Kordjamshidi, P., Moens, M.F.: Deep embedding for spatial role labeling. arXiv preprint arXiv:1603.08474 (2016)
Mazalov, A., Martins, B., Matos, D.: Spatial role labeling with convolutional neural networks. In: Proceedings of the 9th Workshop on Geographic Information Retrieval, p. 12. ACM (2015)
Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Pustejovsky, J., Kordjamshidi, P., Moens, M.F., Levine, A., Dworman, S., Yocum, Z.: SemEval-2015 task 8: SpaceEval. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 884–894 (2015)
Pustejovsky, J., Moszkowicz, J.L., Verhagen, M.: ISO-space: the annotation of spatial information in language. In: Proceedings of the Sixth Joint ISO-ACL SIGSEM Workshop on Interoperable Semantic Annotation, vol. 6, pp. 1–9 (2011)
Roberts, K., Harabagiu, S.M.: UTD-SPRL: a joint approach to spatial role labeling. In: Proceedings of the First Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings of the Main Conference and the Shared Task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation, pp. 419–424. Association for Computational Linguistics (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Ramrakhiyani, N., Palshikar, G., Varma, V. (2019). A Simple Neural Approach to Spatial Role Labelling. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds) Advances in Information Retrieval. ECIR 2019. Lecture Notes in Computer Science(), vol 11438. Springer, Cham. https://doi.org/10.1007/978-3-030-15719-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-15719-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15718-0
Online ISBN: 978-3-030-15719-7
eBook Packages: Computer ScienceComputer Science (R0)