Skip to main content

Modeling Adoption Behavior for Innovation Diffusion

  • Conference paper
  • First Online:
Information in Contemporary Society (iConference 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11420))

Included in the following conference series:

  • 5834 Accesses

Abstract

In the current AI era, an increasing number of new technologies have been developed which promote disruptive innovation, making analysis of diffusion of innovation ever more important. Where previous studies have mainly focused on the direct influence of new technology adoption behaviors, this article proposes a new model (Adoption Behavior-based Graphical Model (ABGM)) which incorporates the effect of influencing factors (i.e., homophily and heterophily) on users’ behavior regarding the adoption of new AI technologies. This model simulates the process of innovation diffusion and connects the diffusion patterns in a unified framework. We evaluate the proposed model on a large-scale AI publication dataset from 2006 to 2015. Results show that ABGM outperforms start-of-the-art baselines and also demonstrates that the probability of individual users adopting an innovation is significantly influenced by the diffusion process through the correlation network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Networks 25(3), 211–230 (2003)

    Article  Google Scholar 

  2. Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Sketch-based influence maximization and computation: scaling up with guarantees, pp. 629–638 (2014)

    Google Scholar 

  3. Hethcote, H.W.: The mathematics of infectious diseases. Siam Rev. 42(4), 599–653 (2000)

    Article  MathSciNet  Google Scholar 

  4. Hong, L., Dan, O., Davison, B.D.: Predicting popular messages in Twitter. In: International Conference on World Wide Web, WWW 2011, Hyderabad, India, 28 March–April, pp. 57–58 (2011)

    Google Scholar 

  5. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. Progressive Research, pp. 137–146 (2010)

    Google Scholar 

  6. Min, C., Ding, Y., Li, J., Bu, Y., Pei, L., Sun, J.: Innovation or imitation: the diffusion of citations. J. Assoc. Inform. Sci. Technol. 69(10), 1271–1282 (2018)

    Google Scholar 

  7. Myers, S.A., Leskovec, J.: Clash of the contagions: cooperation and competition in information diffusion. In: IEEE International Conference on Data Mining, pp. 539–548 (2012)

    Google Scholar 

  8. Newman, M.E.J.: The structure and function of complex networks. Siam Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  9. Petrovic, S., Osborne, M., Lavrenko, V.: Rt to win! predicting message propagation in twitter. Dentistry Today 19(11) (2011)

    Google Scholar 

  10. Rogers, E.M.: Diffusion of Innovations. Free Press, New York (2003)

    Google Scholar 

  11. Rong, X., Mei, Q.: Diffusion of innovations revisited: from social network to innovation network, pp. 499–508 (2013)

    Google Scholar 

  12. Su, Y., Zhang, X., Yu, P.S., Hua, W., Zhou, X., Fang, B.: Understanding information diffusion under interactions. In: International Joint Conference on Artificial Intelligence, pp. 3875–3881 (2016)

    Google Scholar 

  13. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008)

    Google Scholar 

  14. Xiong, F., Liu, Y., Zhang, Z.J., Zhu, J., Zhang, Y.: An information diffusion model based on retweeting mechanism for online social media. Phys. Lett. A 376(30–31), 2103–2108 (2012)

    Article  Google Scholar 

  15. Yang, Y., et al.: Rain: social role-aware information diffusion (2014)

    Google Scholar 

  16. Yang, Z., et al.: Understanding retweeting behaviors in social networks. In: ACM International Conference on Information and Knowledge Management, pp. 1633–1636 (2010)

    Google Scholar 

  17. Zhai, Y., Ding, Y., Wang, F.: Measuring the diffusion of an innovation: a citation analysis. J. Assoc. Inform. Sci. Technol. 69(3) (2017)

    Google Scholar 

  18. Zhang, X., Su, Y., Qu, S., Xie, S., Fang, B., Yu, P.: IAD: interaction-aware diffusion framework in social networks. IEEE Trans. Knowl. Data Eng. PP(99), 1 (2017)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Chinese National Social Science Major Project 17ZDA200 and Chinese National Nature Science Youth Project 61702564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daifeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, E. et al. (2019). Modeling Adoption Behavior for Innovation Diffusion. In: Taylor, N., Christian-Lamb, C., Martin, M., Nardi, B. (eds) Information in Contemporary Society. iConference 2019. Lecture Notes in Computer Science(), vol 11420. Springer, Cham. https://doi.org/10.1007/978-3-030-15742-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15742-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15741-8

  • Online ISBN: 978-3-030-15742-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics