Skip to main content

Digital Image Forensics-Gateway to Authenticity: Crafted with Observations, Trends and Forecasts

  • Chapter
  • First Online:
Handbook of Multimedia Information Security: Techniques and Applications

Abstract

In today’s digital savvy world, we are more convinced from images as they are the most commonly transmitted information means via the internet. However, in the present days, easy accessibility of very low-cost or free multimedia software such as Adobe PhotoShop, GIMP; having a large number of manipulating features, create hindrance to achieve authenticity as well integrity of this digital data. So, the need of a solid remedy for the above problems has brought an enthusiasm for Forensics. This chapter will be quite good for beginners and a nice review for experienced forensic examiners. The focus of this chapter is to provide the researchers the recent trends in the fields of digital image forensics, which are required to achieve necessary knowledge about that field of forgery. In order to achieve these objectives, the chapters will emphasize on theoretical advances, trends and observations in image forensics. One of the evolving challenges that are covered in the chapter is pixel based image Forensics. It includes observations on forgery detection techniques that are designed for detecting significant changes in images. Finally, the chapter is concluded including the future directions in image forensics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amerini I, Ballan L, Caldelli R, Del Bimbo A, Del Tongo L, Serra G (2013) Copy-move forgery detection and localization by means of robust clustering with j-linkage. Signal Process Image Commun 28(6):659–669

    Google Scholar 

  2. Forensics Timeline (2011) Cbsnews.com. Archived from the original on 2011-06-29

  3. A Brief Background of Forensic Science (2009) Archived 2009-12-16 at the Wayback Machine

    Google Scholar 

  4. Ci S, Brian EM (1981) The washing away of wrongs: forensic medicine in thirteenth-century China. Ann Arbor: Center for Chinese Studies, Univ of Michigan,. Print. p. 3

    Google Scholar 

  5. Burkhard M. (2016) Handbook of Forensic Medicine. Sussex: Wiley Blackwell. p. 10. ISBN 9780470979990. Archived from the original on 2016-05-05

    Google Scholar 

  6. Battiato S, Farinella GM, Messina E, Puglisi G (2012) Robust image alignment for tampering detection. IEEE Trans Inf Forensics Secur 7(4):1105–1117

    Article  Google Scholar 

  7. Tziakouris G (2018) Cryptocurrencies-A Forensic Challenge or Opportunity for Law Enforcement? An Interpol Perspective. IEEE Security & Privacy 16(4): 92-94

    Google Scholar 

  8. Pearson H (2005) Image manipulation: CSI: cell biology. Nature.434:952-953

    Article  Google Scholar 

  9. Farid H (2006) Exposing digital forgeries in scientific images. In: Proceedings of the 8th workshop on multimedia and security, Geneva. pp 29-36

    Google Scholar 

  10. Bohme R, Freiling FC, Gloe T, Kirchner M (2009) Multimedia forensics is not computer forensics. In: Geradts ZJMH, Franke K, Veenman CJ (eds) Computational forensics. Springer, Berlin, pp 90-103

    Chapter  Google Scholar 

  11. Reith M, Carr C, Gunsch G (2002) An examination of digital forensic models. Int J Digital Evid 1(3):1–12

    Google Scholar 

  12. Rogers M (2003) The role of criminal profiling in the computer forensics process. Comput Secur 22(4):292–298

    Article  Google Scholar 

  13. Caldelli R, Amerini I, Picchioni F, De Rosa A, Uccheddu F (2009) Multimedia forensic techniques for acquisition device identification and digital image authentication. In: Handbook of research on computational forensics, digital crime and investigation: methods and solutions, pp 130-154

    Chapter  Google Scholar 

  14. Falagas ME, Pitsouni EI, Malietzis GA, Pappas G (2008) Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. The FASEB Journal Life Sciences Forum 22:338-342

    Article  Google Scholar 

  15. Chadegani AA, Salehi H, Yunus MM, Farhadi H, Fooladi M, Farhadi M, Ebrahim NA (2013) A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Social Science 9(5):18-26

    Google Scholar 

  16. Pandey RC, Singh SK, Shukla KK (2016) Passive forensics in image and video using noise features. Journal Digital Investigation: The Int. J. of Digital Forensics & Incident Response.19(c):1-28

    Google Scholar 

  17. Mushtaq S, Mir HA (2014) Digital image forgeries and passive image authentication techniques: a survey. Int J Adv Sci Technol. 73:15-32

    Article  Google Scholar 

  18. Ansari MD, Ghrera S, Tyagi V. (2014) Pixel-based image forgery detection: a review. IETE J Educ. 55: 40-46

    Article  Google Scholar 

  19. Huynh T, Huynh K, Le T, Nguyen S (2015) A survey on image forgery detection techniques. In: Computing & communication technologies-research, innovation, and vision for the Future (RIVF) CanTho, Vietnam, pp 71-76

    Google Scholar 

  20. Vaishnavi D, Subashini TS (2015) A passive technique for image forgery detection using contrast context histogram features. International Journal of Electronic Security and Digital Forensics 7(3): 278-289

    Article  Google Scholar 

  21. Panda S, Mishra M (2018) Passive Techniques of Digital Image Forgery Detection: Developments and Challenges” In book: Advances in Electronics, Communication and Computing, pp.281-290

    Google Scholar 

  22. Souza AdRF, Sousa SdLS, Franco DP (2017) Horus - A Computational Tool for Digital Image Forensics Through Artificial Intelligence and Pattern Comparison. In: chapter Multimedia Forensics Guidebook: Image, Audio, Video, 6(11)

    Google Scholar 

  23. Wayne DF, Bryant SP, Cook J, Kirschbaum D (2014) An Ounce of Prevention: A Guide for Combating Fraud in Construction. The Construction Lawyer 34(3):17-21

    Google Scholar 

  24. Masoner L A Brief History of Photography and the Camera. https://www.thesprucecrafts.com/brief-history-of-photography-2688527

  25. Asghar K, Habib Z, Hussain M (2017) Copy-move and splicing image forgery detection and localization techniques: a review. Australian Journal of Forensic Sciences, 49(3):281-307

    Article  Google Scholar 

  26. Christlein V, Riess C, Jordan J, Riess C, Angelopoulou E (2012) An Evaluation of Popular Copy-Move Forgery Detection Approaches. IEEE Trans. Inf. Forensics Secur. 7:1841–1854

    Article  Google Scholar 

  27. Al-Qershi OM, Khoo BE (2013) Passive detection of copy-move forgery in digital images:state-of-the-art.ForensicSci.Int 231(1-3):284–295

    Google Scholar 

  28. Lin W, Khan SU, Yow KC, Qazi T, Madani SA, Xu CZ, Kołodziej J, Khan Ia, Li H, Hayat K (2013) Survey on blind image forgery detection. IET Image Process 7: 660–670

    Google Scholar 

  29. Birajdar GK, Mankar VH (2013) Digital image forgery detection using passive techniques: a survey. Digit. Investig 10:226-245

    Article  Google Scholar 

  30. Peng F, Nie YY, Long M (2011) A complete passive blind image copy-move forensics scheme based on compound statistics features. Forensic Science International 212(1-3):e21-e25

    Article  Google Scholar 

  31. Hashmi MF, Anand V, Keskar AG (2014) Copy-move image forgery detection using an efficient and robust method combining un-decimated wavelet transform and scale invariant feature transform. AASRI Procedia. 9: 84-91

    Article  Google Scholar 

  32. Fridrich J, Soukal D, Lukas J (2003) Detection of copy-move forgery in digital images. In: Proceedings of the Digital Forensic Research Workshop, Cleveland, OH, USA, pp. 55-61

    Google Scholar 

  33. Li L, Li S, Zhu H, Chu SC, Roddick JF, Pan JS (2013) An efficient scheme for detecting copy-move forged images by local binary patterns. Journal of Information Hiding and Multimedia Signal Processing 4(1):46-56

    Google Scholar 

  34. Garfinkel SL (2006) Forensic feature extraction and cross-drive analysis. Digital investigation, 71-81

    Article  Google Scholar 

  35. Lin X, Li JH,Wang SL, ChungLiew AW, Xiao FC, Huang S (2018) Recent Advances in Passive Digital Image Security Forensics: A Brief Review. Engineering.4(1):29-39

    Google Scholar 

  36. Pan X, Lyu S (2010) Region duplication detection using image feature matching. IEEE Transactions on Information Forensics and Security 5(4):857-867

    Article  Google Scholar 

  37. Kang X, Wei S (2008) Identifying tampered regions using singular value decomposition in digital image forensics In: Proceedings of the International Conference on Computer Science and Software Engineering, Wuhan, China, pp 926-930

    Google Scholar 

  38. Hussain M, Muhammad G, Saleh SQ, Mirza AM, Bebis G (2012) Copy-move image forgery detection using multi-resolution weber descriptors. In: Proceedings of the 8th International Conference on Signal Image Technology and Internet Based Systems, Naples, Italy pp 395-401

    Google Scholar 

  39. Zhu Y, Shen XJ, Chen HP (2017) Covert copy-move forgery detection based on color LBP. Acta Automatica Sinica 43(3):390-397

    Google Scholar 

  40. Li G, Wu Q, Tu D, Sun S A (2007) sorted neighborhood approach for detecting duplicated regions in imageforgeries based on DWT and SVD. In: Proceedings of the IEEE International Conference on Multimedia and Expo, Beijing, China. pp 1750-1753

    Google Scholar 

  41. Lin HJ, Wang CW, Kao YT (2009) Fast copy-move forgery detection. WSEAS Transactions on Signal processing 5(5):188-197

    Google Scholar 

  42. Wang JW, Liu GJ, Zhang Z, Dai Y, Wang Z (2009) Fast and robust forensics for image region-duplication forgery. Acta Autom Sin 35(12):1488–1495

    Article  Google Scholar 

  43. Zhang J, Feng Z, Su Y (2008) A new approach for detecting copy-move forgery in digital images. In: 11th IEEE Singapore international conference on communication systems, 2008. ICCS 2008. IEEE, Washington, pp 362–366

    Google Scholar 

  44. Li G, Wu Q, Tu D, Sun S (2007) A sorted neighborhood approach for detecting duplicated regions in image forgeries based on DWT and SVD. In: 2007 IEEE international conference on multimedia and expo, pp 1750–1753

    Google Scholar 

  45. Myrna A, Venkateshmurthy M, Patil C (2007) Detection of region duplication forgery in digital images using wavelets and log-polar mapping. In: International conference on conference on computational intelligence and multimedia applications, Washington, IEEE, pp 371-377

    Google Scholar 

  46. Popescu AC, Farid H (2004) Exposing digital forgeries by detecting duplicated image regions. Department of Computer Science, Dartmouth College, Tech. Rep. TR2004-515

    Google Scholar 

  47. Li S, Zhang A, Zheng Y, Zhu T, Jin B (2009) Detection of copymove image forgeries based on sift. J PLA Univ Sci Technol (NatSci Ed) 10(4):339-343

    Google Scholar 

  48. Avola D,Cinque L,Foresti GL, Massaroni C, Pannone D (2017) A keypoint-based method for background modeling and foreground detection using a PTZ camera. Pattern Recognition Letters,96: 96-105

    Article  Google Scholar 

  49. Shivakumar B, Santhosh Baboo S (2011) Detection of region duplication forgery in digital images using surf. Int J Comput Sci Issues (IJCSI) 8(4):199-205

    Google Scholar 

  50. Fridrich AJ, Soukal BD, Lukáš AJ (2003) Detection of copymove forgery in digital images. In: Proceedings of digital forensic research workshop. Citeseer

    Google Scholar 

  51. Popescu A, Farid H. (2004) Exposing digital forgeries by detecting duplicated image regions. Dartmouth College; Technical Report TR2004-515; Hanover, New Hampshire

    Google Scholar 

  52. Zimba M, Xingming S (2011) Detection of image duplicated regions affected by rotation, scaling and translation using block characteristics of DWT coefficients. Int J Digit Content Technol Appl. 5:143-150

    Google Scholar 

  53. Hmimid A, Sayyouri M, Hassan (2014) Image Classification Using Novel Set of Charlier Moment Invariants. WSEAS Trans Signal Process, 10:156-167

    Google Scholar 

  54. Ryu SJ, Lee MJ, Lee HK (2010) Detection of copy-rotate-move forgery using Zernike moments. In: Böhme R, Fong PWL, Safavi-Naini R (eds) Information hiding. Springer, Berlin, pp 51-65

    Chapter  Google Scholar 

  55. Ardizzone E, Bruno A, Mazzola G (2010) Copy-move forgery detection via texture description. In: Proceedings of the 2nd ACM workshop on multimedia in forensics, security and intelligence.ACM, New York, pp 59–64

    Google Scholar 

  56. Wang J, Liu G, Li H, Dai Y, Wang Z (2009) Detection of image region duplication forgery using model with circle block. In: International conference on multimedia information networking and security, MINES’09, vol 1. IEEE, Washington, pp 25-29

    Google Scholar 

  57. Mallat S, Zhong S (1992) Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(7):710-732

    Article  Google Scholar 

  58. Patil DP, Landge L (2016) Detection of Digital Image Forgery using Transformation Domain. Int J of Engineering Research & Technology.5 (6):599-602

    Google Scholar 

  59. Lai S; Bohme R (2013) Block convergence in repeated transform coding: JPEG-100 forensics, carbon dating, and tamper detection. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, pp 3028-3032

    Google Scholar 

  60. Lin Z, He J, Tang X, Tang CK (2009) Fast, automatic and finegrained tampered jpeg image detection via DCT coefficient analysis. Pattern Recognit 42(11):2492–2501

    Article  MATH  Google Scholar 

  61. Li W, Yu N, Yuan Y (2008) Doctored JPEG image detection. In: Proceedings of the Int. Conf. Multimed. Expo 2, IEEE, pp 253-256

    Google Scholar 

  62. Li X, Zhao Y, Liao M, Shih FY, Shi YQ (2012) Passive detection of copy-paste forgery between JPEG images. J. Cent. South Univ 19: 2839-2851

    Article  Google Scholar 

  63. Huang Y, Lu W, Sun W, Long D (2011) Improved DCT-based detection of copy move forgery in images. Forensic Sci. Int. 206: 178-184

    Article  Google Scholar 

  64. Cao Y, Gao T, Fan L, Yang Q (2012) A robust detection algorithm for copy-move forgery in digital images. Forensic Sci. Int. 214: 33-43

    Article  Google Scholar 

  65. Zhao J, Guo J (2013) Passive forensics for copy-move image forgery using a method based on DCT and SVD. Forensic Sci. Int. 233: 158-166

    Article  Google Scholar 

  66. Shao H, Yu T, Xu M, Cui W (2012) Image region duplication detection based on circular window expansion and phase correlation. Forensic Sci. Int. 222:71–82

    Article  Google Scholar 

  67. Yang B, Sun X, Chen X, Zhang J, Li X (2013) An efficient forensic method for copy move forgery detection based on DWT-FWHT. Radio Eng. 22: 1098-1105

    Google Scholar 

  68. Zhang J, Feng Z, Su Y (2008) A new approach for detecting copy-move forgery in digital images, In: 11th IEEE Singapore International Conference on Communication Systems, ICCS 2008 pp 362-366

    Google Scholar 

  69. Muhammad G, Hussain M, Bebis G (2012) Passive Copy Move Image Forgery Detection Using Undecimated Dyadic Wavelet Transform. Digit. Investig. 9:49-5

    Article  Google Scholar 

  70. Deng Y, Wu Y, Zhou L (2012) Detection of copy-rotate-move forgery using Dual Tree Complex Wavelet Transform. Adv. Sci. Lett. 16:32-38

    Article  Google Scholar 

  71. Ketenci S, Ulutas G (2013) Copy-move forgery detection in images via 2D-Fourier Transform. In: Proceedings of the 36th Int. Conf. Telecommun. Signal Process. pp 813-816

    Google Scholar 

  72. Kumar S, Desai J, Mukherjee S (2013) A Fast DCT Based Method for Copy Move Forgery Detection, In: Proceedings of the Second International Conference on Image Information Processing (ICIIP-2013). IEEE pp 649-654

    Google Scholar 

  73. Shin Y (2013) Fast Detection of Copy-Move Forgery Image using DCT. J. Korea Multimed. Soc. 16: 411-417

    Article  Google Scholar 

  74. Davarzani R, Yaghmaie K, Mozaffari S, Tapak M (2013) Copy-move forgery detection using multiresolution local binary patterns. Forensic Sci. Int. 231: 61-72

    Article  Google Scholar 

  75. Gan Y, Zhong J (2014) Image copy-move tamper blind detection algorithm based on integrated feature vectors. J. Chem. Pharm. Res. 6:1584-1590

    Google Scholar 

  76. Hsu HC, Wang MS (2012) Detection of copy-move forgery image using Gabor descriptor. In: Proceedings of the International Conference Anti-Counterfeiting, Secur. Identification, ASID, pp 1-4

    Google Scholar 

  77. Vladimirovich KA, Valerievich MV (2014) A Fast Plain Copy-Move Detection Algorithm Based on Structural Pattern and 2D Rabin-Karp Rolling Hash. In: Proceedings of the 11th International Conference ICIAR, pp 461-468

    Google Scholar 

  78. Lynch G, Shih FY, Liao HYM (2013) An efficient expanding block algorithm for image copy-move forgery detection. Inf. Sci. (Ny.) 239:253-265

    Article  Google Scholar 

  79. Singh J, Raman B (2012) A high performance copy-move image forgery detection scheme on GPU. Adv. Intell. Soft Comput. 131:239-246

    Google Scholar 

  80. Bilgehan M, Uluta M (2013) Detection of Copy-Move Forgery Using Krawtchouk Moment, In: Proceedings of the 8th International Conference on Electrical and Electronics Engineering (ELECO), pp 311-314

    Google Scholar 

  81. Le Z, Xu W (2013) A robust image copy-move forgery detection based on mixed moments. In: Proceedings of the International Conference Softw. Eng. Serv. Sci. ICSESS, IEEE pp 381-384

    Google Scholar 

  82. Mahdian B, Saic S (2007) Detection of copy-move forgery using a method based on blur moment invariants. Forensic Sci. Int. 171:180-189

    Article  Google Scholar 

  83. Ryu SJ, Kirchner M, Lee MJ, Lee HK (2013) Rotation invariant localization of duplicated image regions based on zernike moments. IEEE Trans. Inf. Forensics Secur. 8:1355-1370

    Google Scholar 

  84. Hu MK (1962) Visual Pattern Recognition by. Moment Invariants. IRE Trans. Inf. Theory 2:179–187

    Google Scholar 

  85. Bayram S, Sencar HT, Memon N (2009). An Efficient And Robust Method for Detecting Copy-Move Forgery, In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE pp 1053-1056

    Google Scholar 

  86. Li J, Li X, Yang B, Sun X (2014) Segmentation-based Image Copy-move Forgery Detection Scheme. IEEE Trans. Inf. Forensics Secur. 60(13):1-12

    Google Scholar 

  87. Li W, Yu N (2010) Rotation robust detection of copy-move forgery. In: Proceedings of the International Conference on Image Processing, ICIP. pp 2113-2116

    Google Scholar 

  88. Li Y (2013) Image copy-move forgery detection based on polar cosine transform and approximate nearest neighbor searching. Forensic Sci. Int. 224:59-67

    Article  Google Scholar 

  89. Wu Q, Wang S, Zhang X (2010) Detection of image region-duplication with rotation and scaling tolerance, In: Proceedings of the Second International Conference, ICCCI. pp 100-108

    Chapter  Google Scholar 

  90. Ting Z, Rang-Ding W (2009) Copy-move forgery detection based on SVD in digital image. In: Proceedings of the 2nd International Congress on Image and Signal Processing, CISP’09 pp 0–4

    Google Scholar 

  91. Ardizzone E, Bruno A, Mazzola G (2015) Copy–Move Forgery Detection by Matching Triangles of Keypoints. IEEE Trans on Inf Forensics and Security. 2084 - 2094

    Google Scholar 

  92. Wang T, Tang J, Zhao W, Xu Q, Luo B (2012) Blind detection of copy-move forgery based on multi-scale autoconvolution invariants. Commun. Comput. Inf. Sci. 438-446

    Google Scholar 

  93. Myna AN, Venkateshmurthy MG, Patil CG (2008) Detection of region duplication forgery in digital images using wavelets and log-polar mapping, In: Proceedings of International Conference on Computational Intelligence and Multimedia Applications, ICCIMA 2007. pp 371-377

    Google Scholar 

  94. Kashyap A, Joshi SD (2013) Detection of Copy-Move Forgery Using Wavelet Decomposition. In: Proceedings of International Conference on Signal Processing and Communication (ICSC). pp 1–3

    Google Scholar 

  95. Sekeh AM, Maarof MA, Rohani MF, Mahdian B (2013) Efficient image duplicated region detection model using sequential block clustering. Digit. Investig.10: 73-84

    Google Scholar 

  96. Murali S, Anami BS, Chittapur GB (2012) Detection of Digital Photo Image Forgery. In: Proceedings of International Conference on Advanced Communication Control and Computing Technologies. IEEE pp 9166

    Google Scholar 

  97. Amerini I, Ballan L, Caldelli R, Bimbo A, Del SG (2011) A SIFT-based forensic method for copy - move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Secur. 6:1099-1110

    Article  Google Scholar 

  98. Anand V, Hashmi M, Farukh Keskar AG (2014) A Copy Move Forgery Detection to Overcome Sustained Attacks Using Dyadic Wavelet Transform and SIFT Methods, In: Proceedings of 6th Asian Conference on Intelligent Information and Database Systems (ACIIDS). pp 530-542

    Chapter  Google Scholar 

  99. Farukh M, Anand V, Keskar AG (2014) Copy-move Image Forgery Detection Using an Efficient and Robust Method Combining Un-decimated Wavelet Transform and Scale Invariant Feature Transform. AASRI Procedia 9: 84-91

    Article  Google Scholar 

  100. Huang H, Guo W, Zhang Y (2008) Detection Of Copy-Move Forgery in Digital Images Using SIFT Algorithm, In: Proceedings of Pacific-Asia Workshop on Computational Intelligence and Industrial Application. IEEE pp 272-276

    Google Scholar 

  101. Jaberi M, Bebis G, Hussain M, Muhammad G (2013b) Accurate and robust localization of duplicated region in copy–move image forgery. Mach. Vis. Appl 25:451-475

    Article  Google Scholar 

  102. Shen X, Zhu Y, Lv Y, Chen H (2013) Image Copy-Move Forgery Detection Based on SIFT and Gray Level, In: Proceedings of International Conference on Information Technology and Management Innovation (ICITMI2012) pp 3021-3024

    Article  Google Scholar 

  103. Harris C, Stephens M (1988) A Combined Corner and Edge Detector. In: Proceedings of Alvey Vision Conference. Alvey Vision Club, pp 23.1–23.6

    Google Scholar 

  104. Chen L, Lu W, Ni J, Sun W, Huang J (2013) Region duplication detection based on harris corner points and step sector statistics. J. Vis. Commun. Image Represent.24:244-254

    Article  Google Scholar 

  105. Zhao J, Zhao W (2013) Passive forensics for region duplication image forgery based on harris feature points and local binary patterns. Math. Probl. Eng.1-12

    Google Scholar 

  106. Zheng J, Chang L (2014) Detection Technology of Tampering Image Based on Harris Corner Points. J. Comput. Inf. Syst. 10:1481-1488

    Google Scholar 

  107. Bo X, Junwen W, Guangjie L, Yuewei D (2010) Image Copy-Move Forgery Detection Based On SURF, In: Proceedings of International Conference on Multimedia Information Networking and Security. IEEE. pp 889–892

    Google Scholar 

  108. Mishra P, Mishra N, Sharma S, Patel R (2013) Region duplication forgery detection technique based on SURF and HAC. Sci. World J.1-8

    Google Scholar 

  109. Ng T, Chang S (2004) A model for image splicing. In International conference on image processing ICIP’04 Singapore. pp1169-1172

    Google Scholar 

  110. Ng T, Chang SF, Sun Q (2004) Blind detection of photomontage using higher order statistics. In: International Symposium on Circuits and Systems (ISCAS’04) Vancouver, Canada. pp V-688-V-691

    Google Scholar 

  111. Hsu YF, Chang S (2010) Camera response functions for image forensics: An automatic algorithm for splicing detection. IEEE Trans Inform Forensics Secur 5:816-825

    Article  Google Scholar 

  112. Fang Z, Wang S, Zhang X (2009) Image splicing detection using camera characteristic inconsistency. In: Proceedings of International Conference on Multimedia Information Networking and Security (MINES’09) Hubei, China. pp 20-24

    Google Scholar 

  113. Lin Z, Wang R, Tang X, Shum H-Y (2005) Detecting doctored images using camera response normality and consistency. In: Proceedings of conference on computer vision and pattern recognition (CVPR) San Diego, CA, USA. IEEE pp 1087-1092

    Google Scholar 

  114. Wang W, Dong J, Tan T (2009) Effective image splicing detection based on image chroma. In: Proceedings of 16th IEEE International Conference on Image Processing (ICIP) Cairo, Egypt. pp 1257-1260

    Google Scholar 

  115. Hsu F, Chang S (2006) Detecting image splicing using geometry invariants and camera characteristics consistency. In: Proceedings of IEEE International Conference on Multimedia and Expo. Seattle, USA. Pp 549-552

    Google Scholar 

  116. Mushtaq S, Ajaz H (2014) Novel method for image splicing detection. In: Proceedings of International conference on advances in computing, communications and informatics (ICACCI), Delhi, India. pp 2398-2403

    Google Scholar 

  117. Li X, Jing T, Li X (2010) Image splicing detection based on moment features and Hilbert-Huang Transform. In: Proceedings of IEEE international conference on information theory and information security (ICITIS), Beijing, China. pp 1127–1130

    Google Scholar 

  118. Lin S, Wu T (2011) An integrated technique for splicing and copy-move forgery image detection. In: Proceedings of International congress on image and signal processing (CISP) Shenyang, China. pp 1086-1090

    Google Scholar 

  119. Zhao X, Li S, Wang S, Li J, Yang K (2012) Optimal chroma-like channel design for passive color image splicing detection. EURASIP J Adv Signal Process.2012:1-11

    Google Scholar 

  120. Zhang Z, Zhou Y, Kang J, Ren Y (2008) Study of image splicing detection. In: Proceedings of Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues. Springer, Shanghai, China. pp 1103-1110

    Google Scholar 

  121. Qu Z, Qiu G, Huang J (2009) Detect digital image splicing with visual cues. In: Proceedings of Information Hiding, Berlin, Springer. pp 247-261

    Google Scholar 

  122. Hussain M, Saleh SQ, Aboalsamh H, Muhammad G, Bebis G (2014) Comparison between WLD and LBP descriptors for non-intrusive image forgery detection. In: Proceedings of IEEE international symposium on innovations in intelligent systems and applications (INISTA), Alberobello, Italy. pp 197-204

    Google Scholar 

  123. Birajdar GK, Mankar VH (2018) Subsampling-Based Blind Image Forgery Detection Using Support Vector Machine and Artificial Neural Network Classifiers. Arab J Sci Eng 43:555-568

    Article  Google Scholar 

  124. Qiao T, Zhu A, Retraint F (2018) Exposing image resampling forgery by using linear parametric model. Multimed Tools Appl 77:1501-1523

    Article  Google Scholar 

  125. Chen Z, Zhao Y, Ni R (2017) Detection of operation chain: JPEG-Resampling-JPEG. Signal Processing: Image Communication 57: 8-20

    Google Scholar 

  126. Singh RD, Aggarwal N (2017) Detection of upscale-crop and splicing for digital video authentication. Digital Investigation 21: 31-52

    Article  Google Scholar 

  127. Chen C, Ni J, Shen Z, Shi YQ (2017) Blind Forensics of Successive Geometric Transformations in Digital Images Using Spectral Method: Theory and Applications: 2811-2824

    Google Scholar 

  128. Tu CT, Lin HJ, Yang FW, Chang HW (2014) Approximate Detection Method for Image Up-Sampling. KSII Transactions on Internet & Information Systems 8(2):462-482

    Google Scholar 

  129. Birajdara GK, Mankar (2014) VH Blind method for rescaling detection and rescale factor estimation in digital images using periodic properties of interpolation. Int. J. Electron. Commun. (AEÜ) 68: 644-652

    Article  Google Scholar 

  130. Kao YT, Lin HJ, Wang CW, Pai YC (2012) Effective Detection for Linear Up-Sampling by a Factor of Fraction. IEEE Transactions on Image Processing 21(8): 3443 - 3453

    Article  MathSciNet  MATH  Google Scholar 

  131. Cao G, Zhao Y, Ni R (2012) Forensic identification of resampling operators: A semi non-intrusive approach. Forensic Science International 216: 29-36

    Article  Google Scholar 

  132. Popescu AC, Farid H (2005) Exposing digital forgeries by detecting traces of resampling. IEEE Transactions on Signal Processing 53(2): 758-767

    Article  MathSciNet  MATH  Google Scholar 

  133. Ciresan DC, Meier U, Masci J, Maria Gambardella L, Schmidhuber J (2011) Flexible, high performance convolutional neural networks for image classification. In: Proceedings of International Joint Conference on Artificial Intelligence, Barcelona, Spain. pp 1237-1242

    Google Scholar 

  134. Krizhevsky A, Sutskever I, Hinton GE (2012) Image net classification with deep convolutional neural networks. In Advances in neural information processing systems 2:1097-1105

    Google Scholar 

  135. Ji S, Xu W, Yang M, Yu K (2013) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35:221–231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeru Jindal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jindal, N., Singh, K. (2019). Digital Image Forensics-Gateway to Authenticity: Crafted with Observations, Trends and Forecasts. In: Singh, A., Mohan, A. (eds) Handbook of Multimedia Information Security: Techniques and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-15887-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15887-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15886-6

  • Online ISBN: 978-3-030-15887-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics