Abstract
Production frontier analysis aims at the identification of best production practices and the importance of external factors, endogenous or not, that affect the production function and the technical efficiency component. In particular, in the context of the Brazilian agriculture, it is desirable for policy makers to identify the effect on production of variables related to market imperfections. Market imperfections occur when farmers are subjected to different market conditions depending on their income. In general, large scale farmers access lower input prices and may sell their production at lower prices, thereby making competition harder for small farmers. Market imperfections are typically associated with infrastructure, environment control requirements and the presence of technical assistance. In this article, at county level, and using agricultural census data, we estimate the elasticities of these variables on production by maximum likelihood methods. Technological inputs dominate the production response, followed by labor and land. Environment control has a positive net effect on production, as well as technical assistance. The indicator of infrastructure affects positively technical efficiency. There is no evidence of technical assistance endogeneity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alves, E., Souza, G.S., Rocha, D.P.: Desigualdade nos campos sob a ótica do censo agropecuário 2006. Revista de Política Agrícola 22, 67–75 (2013)
Souza, G.S., Gomes, E.G., Alves, E.R.A., Magalhães, E., Rocha, D.P.: Um modelo de produção para a agricultura brasileira e a importância da pesquisa da Embrapa. In: Alves, E.R.A., Souza, G.S., Gomes, E.G. (eds.) Contribuição da Embrapa para o desenvolvimento da agricultura no Brasil, pp. 49–86. Embrapa, Brasília (2013)
Souza, G.S., Gomes, E.G.: The effect of marketing imperfection variables on production in the context of Brazilian agriculture. In: Proceedings of the 7th International Conference on Operations Research and Enterprise Systems (ICORES 2018), pp. 15–20, Scitepress, Setúbal (2018)
Alves, E., Souza, G.S.: Pequenos estabelecimentos em termos de área também enriquecem? Pedras e tropeços. Revista de Política Agrícola 24, 7–21 (2015)
Souza, G.S., Gomes, E.G., Alves, E.R.A.: Conditional FDH efficiency to assess performance factors for Brazilian agriculture. Pesquisa Operacional 37, 93–106 (2017)
Karakaplan, M.U., Kutlu, L.: Handling endogeneity in stochastic frontier analysis (2013). http://www.mukarakaplan.com/Karakaplan%20-%20EndoSFA.pdf. Accessed 10 Mar 2017
Karakaplan, M.U.: Fitting endogenous stochastic frontier models in Stata. Stata J. 17(1), 39–55 (2017)
Murphy, K.M., Topel, R.H.: Estimation and inference in two step econometric models. J. Bus. Econ. Stat. 3, 370–379 (1985)
Papke, L.E., Wooldridge, J.M.: Econometric methods goes fractional response variables with an application to 401(k) plan participation rates. J. Appl. Econ. 11(6), 619–632 (1996)
Ramalho, E.A., Ramalho, J.J.S., Henriques, P.D.: Fractional regression models for second stage DEA efficiency analyses. J. Prod. Anal. 34, 239–255 (2010)
IBGE Homepage. Censo Agropecuário (2006). http://www.ibge.gov.br/home/estatistica/economia/agropecuaria/censoagro/. Accessed 24 Jan 2012
IBGE Homepage. Censo Demográfico (2010). http://censo2010.ibge.gov.br/. Accessed 24 Jan 2012
INEP Homepage. Nota Técnica do Índice de Desenvolvimento da Educação Básica (2012) http://ideb.inep.gov.br/resultado/. Accessed 24 Jan 2012
Ministério da Saúde Homepage. IDSUS – Índice de Desempenho do SUS (2011). http://portal.saude.gov.br/. Accessed 02 Mar 2012
Amsler, C., Prokhorov, A., Schmidt, P.: Endogeneity in stochastic frontier models. J. Econometrics 190, 280–288 (2016)
Greene, W.H.: Econometric Analysis, 6th edn. Prentice Hall, Englewood Cliffs (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
da Silva e Souza, G., Gomes, E.G. (2019). A Stochastic Production Frontier Analysis of the Brazilian Agriculture in the Presence of an Endogenous Covariate. In: Parlier, G., Liberatore, F., Demange, M. (eds) Operations Research and Enterprise Systems. ICORES 2018. Communications in Computer and Information Science, vol 966. Springer, Cham. https://doi.org/10.1007/978-3-030-16035-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-16035-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16034-0
Online ISBN: 978-3-030-16035-7
eBook Packages: Computer ScienceComputer Science (R0)