Abstract
Current state-of-the-art nonparametric Bayesian text clustering methods model documents through multinomial distribution on bags of words. Although these methods can effectively utilize the word burstiness representation of documents and achieve decent performance, they do not explore the sequential information of text and relationships among synonyms. In this paper, the documents are modeled as the joint of bags of words, sequential features and word embeddings. We proposed Sequential Embedding induced Dirichlet Process Mixture Model (SiDPMM) to effectively exploit this joint document representation in text clustering. The sequential features are extracted by the encoder-decoder component. Word embeddings produced by the continuous-bag-of-words (CBOW) model are introduced to handle synonyms. Experimental results demonstrate the benefits of our model in two major aspects: (1) improved performance across multiple diverse text datasets in terms of the normalized mutual information (NMI); (2) more accurate inference of ground truth cluster numbers with regularization effect on tiny outlier clusters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-28349-8_2
Blei, D.M., Jordan, M.I.: Variational inference for Dirichlet process mixtures. Bayesian Anal. 1(1), 121–143 (2006). https://doi.org/10.1214/06-BA104
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Cai, D., He, X., Han, J.: SRDA: an efficient algorithm for large-scale discriminant analysis. IEEE Trans. Knowl. Data Eng. 20(1), 1–12 (2008)
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP 2014, pp. 1724–1734. Association for Computational Linguistics, Doha, Qatar, October 2014. http://www.aclweb.org/anthology/D14-1179
Duan, T., Pinto, J.P., Xie, X.: Parallel clustering of single cell transcriptomic data with split-merge sampling on Dirichlet process mixtures. Bioinformatics p. bty702 (2018). https://doi.org/10.1093/bioinformatics/bty702
Duan, T., Srihari, S.N.: Pseudo boosted deep belief network. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 105–112. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0_13
Duan, T., Srihari, S.N.: Layerwise interweaving convolutional LSTM. In: Mouhoub, M., Langlais, P. (eds.) AI 2017. LNCS, vol. 10233, pp. 272–277. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-57351-9_31
Gomez, J.C., Moens, M.F.: PCA document reconstruction for email classification. Comput. Stat. Data Anal. 56(3), 741–751 (2012)
Gu, Y., Chen, S., Marsic, I.: Deep multimodal learning for emotion recognition in spoken language. CoRR abs/1802.08332 (2018)
Gu, Y., Li, X., Chen, S., Zhang, J., Marsic, I.: Speech intention classification with multimodal deep learning. In: Mouhoub, M., Langlais, P. (eds.) AI 2017. LNCS (LNAI), vol. 10233, pp. 260–271. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57351-9_30
Hori, C., Hori, T., Lee, T., Sumi, K., Hershey, J.R., Marks, T.K.: Attention-based multimodal fusion for video description. CoRR abs/1701.03126 (2017)
Hotho, A., Staab, S., Maedche, A.: Ontology-based text clustering. In: Proceedings of the IJCAI 2001 Workshop Text Learning: Beyond Supervision (2001)
Huang, R., Yu, G., Wang, Z.: Dirichlet process mixture model for document clustering with feature partition. IEEE Trans. Knowl. Data Eng. 25(8), 1748–1759 (2013)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980
Li, Y., et al.: Towards differentially private truth discovery for crowd sensing systems. CoRR abs/1810.04760 (2018)
Liu, M., Chen, L., Liu, B., Wang, X.: VRCA: a clustering algorithm for massive amount of texts. In: IJCAI 2015, pp. 2355–2361. AAAI Press (2015). http://dl.acm.org/citation.cfm?id=2832415.2832576
Luong, M., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. CoRR abs/1508.04025 (2015)
Mikolov, T., et al.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) NIPS, pp. 3111–3119. Curran Associates, Inc. (2013)
Mikolov, T., Yih, W., Zweig, G.: Linguistic regularities in continuous space word representations. In: HLT-NAACL, pp. 746–751 (2013)
Neal, R.M.: Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Stat. 9(2), 249–265 (2000)
Nie, Y., Han, Y., Huang, J., Jiao, B., Li, A.: Attention-based encoder-decoder model for answer selection in question answering. Front. Inf. Technol. Electron. Eng. 18(4), 535–544 (2017)
Rangrej, A., Kulkarni, S., Tendulkar, A.V.: Comparative study of clustering techniques for short text documents. In: Proceedings of the 20th International Conference Companion on World Wide Web, WWW 2011, pp. 111–112. ACM, New York (2011)
Shafiei, M.M., Milios, E.E.: Latent Dirichlet co-clustering. In: Sixth International Conference on Data Mining (ICDM 2006), pp. 542–551, December 2006
Wang, F., Zhang, C., Li, T.: Regularized clustering for documents. In: SIGIR 2007, pp. 95–102. ACM, New York (2007)
Xun, G., Li, Y., Zhao, W.X., Gao, J., Zhang, A.: A correlated topic model using word embeddings. In: IJCAI 2017, pp. 4207–4213 (2017)
Yin, J., Wang, J.: A model-based approach for text clustering with outlier detection. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 625–636, May 2016
Yin, J., Wang, J.: A Dirichlet multinomial mixture model-based approach for short text clustering. In: KDD 2014, pp. 233–242. ACM, New York (2014)
Yu, G., Huang, R., Wang, Z.: Document clustering via Dirichlet process mixture model with feature selection. In: KDD 2010, pp. 763–772. ACM, New York (2010)
Zhang, H., Li, Y., Ma, F., Gao, J., Su, L.: Texttruth: an unsupervised approach to discover trustworthy information from multi-sourced text data. In: KDD 2018, pp. 2729–2737. ACM, New York (2018). https://doi.org/10.1145/3219819.3219977
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Duan, T., Lou, Q., Srihari, S.N., Xie, X. (2019). Sequential Embedding Induced Text Clustering, a Non-parametric Bayesian Approach. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11441. Springer, Cham. https://doi.org/10.1007/978-3-030-16142-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-16142-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16141-5
Online ISBN: 978-3-030-16142-2
eBook Packages: Computer ScienceComputer Science (R0)