Skip to main content

CRESA: A Deep Learning Approach to Competing Risks, Recurrent Event Survival Analysis

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11440))

Included in the following conference series:

Abstract

Survival analysis refers to a gamut of statistical techniques developed to infer the survival time from time-to-event data. In particular, we are interested in recurrent event survival analysis in the presence of one or more competing risks in each recurrent time-step, in order to obtain the probabilistic relationship between the input covariates and the distribution of event times. Since traditional survival analysis techniques suffer from drawbacks due to strong parametric model constraints and constant hazard based assumptions, we propose a modern deep learning based flexible probabilistic framework for cause-specific recurrent survival analysis. In single-risk scenarios, we propose an LSTM-based model where the time-steps represent the recurrent events for each participant whose covariates may be static or time-varying. To cater to multi-risk scenarios, we build on the single-risk LSTM model and introduce a cumulative incidence curve approach to handle the multiple competing risks using a joint distribution over the event times and each of the competing risks over multiple time-steps and term the proposed novel architecture as CRESA. We use the concordance index per risk and the maximum absolute error in every time-step as the metrics of performance. We demonstrate a superior predictive performance of the proposed approach (single and multiple risk scenarios) as compared to traditional model-based approaches, and deep learning based approaches for synthetic and state-of-the-art public datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/jaredleekatzman/DeepSurv.

References

  1. Alaa, A.M., van der Schaar, M.: Deep multi-task Gaussian processes for survival analysis with competing risks. In: 30th Conference on Neural Information Processing Systems (2017)

    Google Scholar 

  2. Andersen, P.K., Gill, R.D.: Cox’s regression model for counting processes: a large sample study. Ann. Stat. 10, 1100–1120 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cox, D.R.: Analysis of Survival Data. Routledge, London (2018)

    Book  Google Scholar 

  4. Doksum, K.A., Hbyland, A.: Models for variable-stress accelerated life testing experiments based on wener processes and the inverse gaussian distribution. Technometrics 34(1), 74–82 (1992)

    Article  Google Scholar 

  5. Faraggi, D., Simon, R.: A neural network model for survival data. Stat. Med. 14(1), 73–82 (1995)

    Article  Google Scholar 

  6. Fine, J.P., Gray, R.J.: A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc. 94(446), 496–509 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gray, R.J.: A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann. Stat. 16, 1141–1154 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  9. Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S., et al.: Random survival forests. Ann. Appl. Stat. 2(3), 841–860 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)

    Article  Google Scholar 

  11. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  12. Katzman, J.L., Shaham, U., Cloninger, A., et al.: DeepSurv: personalized treatment recommender system using a cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18(1), 24 (2018)

    Article  Google Scholar 

  13. Kleinbaum, D.G., Klein, M.: Survival Analysis, vol. 3. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-6646-9

    Book  MATH  Google Scholar 

  14. Lee, C., Zame, W.R., Yoon, J., van der Schaar, M.: Deephit: a deep learning approach to survival analysis with competing risks (2018)

    Google Scholar 

  15. Lee, M.L.T., Whitmore, G.: Proportional hazards and threshold regression: their theoretical and practical connections. Lifetime Data Anal. 16(2), 196–214 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liao, L., Ahn, H.i.: Combining deep learning and survival analysis for asset health management. Int. J. Prognostics Health Manage. (2016)

    Google Scholar 

  17. Longini, I.M., Clark, W.S., Byers, R.H., Ward, J.W., Darrow, W.W., et al.: Statistical analysis of the stages of HIV infection using a Markov model. Stat. Med. 8, 831–843 (1989)

    Article  Google Scholar 

  18. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts (2016)

    Google Scholar 

  19. Luck, M., Sylvain, T., Cardinal, H., Lodi, A., Bengio, Y.: Deep learning for patient-specific kidney graft survival analysis. arXiv preprint arXiv:1705.10245 (2017)

  20. Lunn, M., McNeil, D.: Applying cox regression to competing risks. Biometrics 51, 524–532 (1995)

    Article  Google Scholar 

  21. Meira-Machado, L., de Uña-Álvarez, J., Cadarso-Suárez, C., Andersen, P.K.: Multi-state models for the analysis of time-to-event data. Stat. Methods Med. Res. 18(2), 195–222 (2009)

    Article  MathSciNet  Google Scholar 

  22. Ranganath, R., Perotte, A., Elhadad, N., Blei, D.: Deep survival analysis. arXiv preprint arXiv:1608.02158 (2016)

  23. Rondeau, V., Mazroui, Y., Gonzalez, J.R.: Frailtypack: an R package for the analysis of correlated survival data with frailty models using penalized likelihood estimation or parametrical estimation. J. Stat. Softw. 47(4), 1–28 (2012)

    Article  Google Scholar 

  24. Wang, M.C., Chang, S.H.: Nonparametric estimation of a recurrent survival function. J. Am. Stat. Assoc. 94(445), 146–153 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, P., Li, Y., Reddy, C.K.: Machine learning for survival analysis: a survey. arXiv preprint arXiv:1708.04649 (2017)

  26. Wei, L.J., Lin, D.Y., Weissfeld, L.: Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J. Am. Stat. Assoc. 84, 1065–1073 (1989)

    Article  MathSciNet  Google Scholar 

  27. Zhu, X., Yao, J., Huang, J.: Deep convolutional neural network for survival analysis with pathological images. In: Bioinformatics and Biomedicine (BIBM), pp. 544–547. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garima Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, G., Sunder, V., Prasad, R., Shroff, G. (2019). CRESA: A Deep Learning Approach to Competing Risks, Recurrent Event Survival Analysis. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11440. Springer, Cham. https://doi.org/10.1007/978-3-030-16145-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16145-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16144-6

  • Online ISBN: 978-3-030-16145-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics