Skip to main content

Hawkes Process with Stochastic Triggering Kernel

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11439))

Included in the following conference series:

  • 2807 Accesses

Abstract

The impact from past to future is a vital feature in modelling time series data, which has been described by many point processes, e.g. the Hawkes process. In classical Hawkes process, the triggering kernel is assumed to be a deterministic function. However, the triggering kernel can vary with time due to the system uncertainty in real applications. To model this kind of variance, we propose a Hawkes process variant with stochastic triggering kernel, which incorporates the variation of triggering kernel over time. In this model, the triggering kernel is considered to be an independent multivariate Gaussian distribution. We derive and implement a tractable inference algorithm based on variational auto-encoder. Results from synthetic and real data experiments show that the underlying mean triggering kernel and variance band can be recovered, and using the stochastic triggering kernel is more accurate than the vanilla Hawkes process in capacity planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Customarily, \(Q(\cdot )\) is used for encoder’s distribution in VAE, but here to be consistent with the previous discussion \(P(\cdot )\) is used.

  2. 2.

    Based on the Poisson process, the probability could be larger when intensity is low.

References

  1. Adams, R.P., Murray, I., MacKay, D.J.: Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 9–16. ACM (2009)

    Google Scholar 

  2. Cox, D.R.: Some statistical methods connected with series of events. J. Roy. Stat. Soc. Ser. B (Methodol.) 17, 129–164 (1955)

    MathSciNet  MATH  Google Scholar 

  3. Cunningham, J.P., Byron, M.Y., Shenoy, K.V., Sahani, M.: Inferring neural firing rates from spike trains using Gaussian processes. In: Advances in Neural Information Processing Systems, pp. 329–336 (2008)

    Google Scholar 

  4. Cunningham, J.P., Shenoy, K.V., Sahani, M.: Fast Gaussian process methods for point process intensity estimation. In: Proceedings of the 25th International Conference on Machine Learning, pp. 192–199. ACM (2008)

    Google Scholar 

  5. Dassios, A., Zhao, H., et al.: Exact simulation of Hawkes process with exponentially decaying intensity. Electron. Commun. Probab. 18, 1–13 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)

  7. Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., Song, L.: Recurrent marked temporal point processes: embedding event history to vector. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1555–1564. ACM (2016)

    Google Scholar 

  8. Embrechts, P., Liniger, T., Lin, L.: Multivariate Hawkes processes: an application to financial data. J. Appl. Probab. 48(A), 367–378 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gregory, P., Loredo, T.J.: A new method for the detection of a periodic signal of unknown shape and period. Astrophys. J. 398, 146–168 (1992)

    Article  MATH  Google Scholar 

  10. Hawkes, A.G.: Spectra of some self-exciting and mutually exciting point processes. Biometrika 58(1), 83–90 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  12. Lee, Y., Lim, K.W., Ong, C.S.: Hawkes processes with stochastic excitations. In: International Conference on Machine Learning, pp. 79–88 (2016)

    Google Scholar 

  13. Menon, A.K., Lee, Y.: Predicting short-term public transport demand via inhomogeneous Poisson processes. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 2207–2210. ACM (2017)

    Google Scholar 

  14. Mohler, G.O., Short, M.B., Brantingham, P.J., Schoenberg, F.P., Tita, G.E.: Self-exciting point process modeling of crime. J. Am. Stat. Assoc. 106(493), 100–108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Møller, J., Syversveen, A.R., Waagepetersen, R.P.: Log gaussian cox processes. Scand. J. Stat. 25(3), 451–482 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ogata, Y., Vere-Jones, D.: Inference for earthquake models: a self-correcting model. Stoch. Process. Appl. 17(2), 337–347 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ogata, Y.: On lewis’ simulation method for point processes. IEEE Trans. Inf. Theory 27(1), 23–31 (1981)

    Article  MATH  Google Scholar 

  18. Rodriguez, M.G., Balduzzi, D., Schölkopf, B.: Uncovering the temporal dynamics of diffusion networks. arXiv preprint arXiv:1105.0697 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, F. et al. (2019). Hawkes Process with Stochastic Triggering Kernel. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11439. Springer, Cham. https://doi.org/10.1007/978-3-030-16148-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16148-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16147-7

  • Online ISBN: 978-3-030-16148-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics