Abstract
A system of nested dichotomies (NDs) is a method of decomposing a multiclass problem into a collection of binary problems. Such a system recursively applies binary splits to divide the set of classes into two subsets, and trains a binary classifier for each split. Many methods have been proposed to perform this split, each with various advantages and disadvantages. In this paper, we present a simple, general method for improving the predictive performance of NDs produced by any subset selection techniques that employ randomness to construct the subsets. We provide a theoretical expectation for performance improvements, as well as empirical results showing that our method improves the root mean squared error of NDs, regardless of whether they are employed as an individual model or in an ensemble setting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bengio, S., Weston, J., Grangier, D.: Label embedding trees for large multi-class tasks. In: NIPS, pp. 163–171 (2010)
Beygelzimer, A., Langford, J., Lifshits, Y., Sorkin, G., Strehl, A.: Conditional probability tree estimation analysis and algorithms. In: UAI, pp. 51–58 (2009)
Beygelzimer, A., Langford, J., Ravikumar, P.: Error-correcting tournaments. In: Gavaldà , R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS (LNAI), vol. 5809, pp. 247–262. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04414-4_22
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
Brier, G.: Verification of forecasts expressed in term of probabilities. Mon. Weather Rev. 78, 1–3 (1950)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. JMLR 7(Jan), 1–30 (2006)
Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. JAIR 2, 263–286 (1995)
Dong, L., Frank, E., Kramer, S.: Ensembles of balanced nested dichotomies for multi-class problems. In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 84–95. Springer, Heidelberg (2005). https://doi.org/10.1007/11564126_13
Duarte-Villaseñor, M.M., Carrasco-Ochoa, J.A., MartÃnez-Trinidad, J.F., Flores-Garrido, M.: Nested dichotomies based on clustering. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 162–169. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33275-3_20
Fox, J.: Applied Regression Analysis, Linear Models, and Related Methods. Sage, Thousand Oaks (1997)
Frank, E., Kramer, S.: Ensembles of nested dichotomies for multi-class problems. In: ICML, p. 39. ACM (2004)
Freund, Y., Schapire, R.E.: Game theory, on-line prediction and boosting. In: COLT, pp. 325–332 (1996)
Fürnkranz, J.: Round robin classification. JMLR 2(Mar), 721–747 (2002)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
Harter, H.L.: Expected values of normal order statistics. Biometrika 48(1/2), 151–165 (1961)
Hastie, T., Tibshirani, R., et al.: Classification by pairwise coupling. Ann. Stat. 26(2), 451–471 (1998)
Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181–207 (2003)
Leathart, T., Frank, E., Holmes, G., Pfahringer, B.: On calibration of nested dichotomies. In: Yang, Q., et al. (eds.) Advances in Knowledge Discovery and Data Mining. LNAI, vol. 11439, pp. 69–80. Springer, Heidelberg (2019)
Leathart, T., Pfahringer, B., Frank, E.: Building ensembles of adaptive nested dichotomies with random-pair selection. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9852, pp. 179–194. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46227-1_12
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Lichman, M.: UCI machine learning repository (2013)
Meilă, M.: Comparing clusterings by the variation of information. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 173–187. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45167-9_14
Melnikov, V., Hüllermeier, E.: On the effectiveness of heuristics for learning nested dichotomies: an empirical analysis. Mach. Learn. 107(8–10), 1–24 (2018)
Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In: ICML, pp. 625–632. ACM (2005)
Pimenta, E., Gama, J.: A study on error correcting output codes. In: Portuguese Conference on Artificial Intelligence, pp. 218–223. IEEE (2005)
Rifkin, R., Klautau, A.: defense of one-vs-all classification. JMLR 5, 101–141 (2004)
RodrÃguez, J.J., GarcÃa-Osorio, C., Maudes, J.: Forests of nested dichotomies. Pattern Recognit. Lett. 31(2), 125–132 (2010)
Royston, J.: Algorithm AS 177: expected normal order statistics (exact and approximate). J. R. Stat. Soc. Ser. C (Appl. Stat.) 31(2), 161–165 (1982)
Wever, M., Mohr, F., Hüllermeier, E.: Ensembles of evolved nested dichotomies for classification. In: GECCO, pp. 561–568. ACM (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Leathart, T., Frank, E., Pfahringer, B., Holmes, G. (2019). Ensembles of Nested Dichotomies with Multiple Subset Evaluation. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11439. Springer, Cham. https://doi.org/10.1007/978-3-030-16148-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-16148-4_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16147-7
Online ISBN: 978-3-030-16148-4
eBook Packages: Computer ScienceComputer Science (R0)