Skip to main content

Predicting Low Birth Weight Babies Through Data Mining

  • Conference paper
  • First Online:
New Knowledge in Information Systems and Technologies (WorldCIST'19 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 932))

Included in the following conference series:

Abstract

Low Birth Weight (LBW) babies have a high risk of developing certain health conditions throughout their lives that affect negatively their quality of life. Therefore, a Decision Support System (DSS) that predicts whether a baby will be born with LBW would be of great interest. In this study, six different Data Mining (DM) algorithms are tested for five different scenarios. The scenarios combine information about the mother’s physical characteristics and habits, and the gestation. Results are promising and the best model achieved a sensitivity of 91,4% and a specificity of 99%. Good results were also achieved without considering the gestational age, which showed that the use of DM might be a good alternative to the traditional medical imaging exams in the prediction of LBW early in the pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Poole, K.L., Schmidt, L.A., Missiuna, C., Saigal, S., Boyle, M.H., Van Lieshout, R.J.: Childhood motor coordination and adult psychopathology in extremely low birth weight survivors. J. Affect. Disord. 190, 294–299 (2016). https://doi.org/10.1016/j.jad.2015.10.031

    Article  Google Scholar 

  2. Mañalich, R., Reyes, L., Herrera, M., Melendi, C., Fundora, I.: Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 58(2), 770–773 (2000). https://doi.org/10.1046/j.1523-1755.2000.00225.x

    Article  Google Scholar 

  3. Wolke, D.: Born extremely low birth weight and health related quality of life into adulthood. J. Pediatr. 179, 11–12 (2016). https://doi.org/10.1016/j.jpeds.2016.09.012

    Article  Google Scholar 

  4. de Castro, E.C.M., Leite, Á.J.M., de Almeida, M.F.B., Guinsburg, R.: Perinatal factors associated with early neonatal deaths in very low birth weight preterm infants in northeast brazil. BMC Pediatr. 14(1), 312 (2014)

    Article  Google Scholar 

  5. Bahado-Singh, R.O., Dashe, J., Deren, O., Daftary, G., Copel, J.A., Ehrenkranz, R.A.: Prenatal prediction of neonatal outcome in the extremely low-birth-weight infant. Am. J. Obstet. Gynecol. 178(3), 462–468 (1998). https://doi.org/10.1016/S0002-9378(98)70421-1

    Article  Google Scholar 

  6. Perez-Roche, T., Altemir, I., Giménez, G., Prieto, E., González, I., Peña-Segura, J.L., Castillo, O., Pueyo, V.: Effect of prematurity and low birth weight in visual abilities and school performance. Res. Dev. Disabil. 59, 451–457 (2016). https://doi.org/10.1016/j.ridd.2016.10.002

    Article  Google Scholar 

  7. Dimassi, K., Douik, F., Ajroudi, M., Triki, A., Gara, M.F.: Ultrasound fetal weight estimation: how accurate are we now under emergency conditions? Ultrasound Med. Biol. 41(10), 2562–2566 (2015). https://doi.org/10.1016/j.ultrasmedbio.2015.05.020

    Article  Google Scholar 

  8. Khalil, A., D’antonio, F., Dias, T., Cooper, D., Thilaganathan, B.: Ultrasound estimation of birth weight in twin pregnancy: comparison of biometry algorithms in the stork multiple pregnancy cohort. Ultrasound Obstet. Gynecol. 44(2), 210–220 (2014). https://doi.org/10.1002/uog.13253

    Article  Google Scholar 

  9. Yadav, H., Lee, N.: Maternal factors in predicting low birth weight babies. Med. J. Malays. 68(1), 44–47 (2012)

    Google Scholar 

  10. Portela, F., Santos, M.F., Silva, Á., Rua, F., Abelha, A., Machado, J.: Preventing patient cardiac arrhythmias by using data mining techniques. In: 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), pp. 165–170. IEEE (2014). https://doi.org/10.1109/IECBES.2014.7047478

  11. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 37 (1996)

    Google Scholar 

  12. Brandao, A., Pereira, E., Portela, F., Santos, M.F., Abelha, A., Machado, J.: Predicting the risk associated to pregnancy using data mining. In: Proceedings of the International Conference on Agents and Artificial Intelligence, ICAART 2015, vol. 2, Lisbon, Portugal. SciTePress (2015)

    Google Scholar 

  13. Khademolqorani, S., Hamadani, A.Z.: An adjusted decision support system through data mining and multiple criteria decision making. Procedia Soc. Behav. Sci. 73, 388–395 (2013). https://doi.org/10.1016/j.sbspro.2013.02.066

    Article  Google Scholar 

  14. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011). https://doi.org/10.1007/978-1-4899-7993-3_104-2

    Book  MATH  Google Scholar 

  15. Castaneda, C., Nalley, K., Mannion, C., Bhattacharyya, P., Blake, P., Pecora, A., Goy, A., Suh, K.S.: Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J. Clin. Bioinform. 5(1), 4 (2015). https://doi.org/10.1186/s13336-015-0019-3

    Article  Google Scholar 

  16. Pereira, S., Portela, F., Santos, M.F., Machado, J., Abelha, A.: Predicting type of delivery by identification of obstetric risk factors through data mining. Procedia Comput. Sci. 64, 601–609 (2015)

    Article  Google Scholar 

  17. Naik, A., Samant, L.: Correlation review of classification algorithm using data mining tool: WEKA, Rapidminer, Tanagra, Orange and Knime. Procedia Comput. Sci. 85, 662–668 (2016)

    Article  Google Scholar 

  18. Yadav, S.K., Bharadwaj, B., Pal, S.: Data mining applications: a comparative study for predicting student’s performance. arXiv preprint arXiv:1202.4815 (2012)

  19. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: Crisp-dm 1.0 step-by-step data mining guide (2000)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Peixoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loreto, P., Peixoto, H., Abelha, A., Machado, J. (2019). Predicting Low Birth Weight Babies Through Data Mining. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S. (eds) New Knowledge in Information Systems and Technologies. WorldCIST'19 2019. Advances in Intelligent Systems and Computing, vol 932. Springer, Cham. https://doi.org/10.1007/978-3-030-16187-3_55

Download citation

Publish with us

Policies and ethics