Abstract
Low Birth Weight (LBW) babies have a high risk of developing certain health conditions throughout their lives that affect negatively their quality of life. Therefore, a Decision Support System (DSS) that predicts whether a baby will be born with LBW would be of great interest. In this study, six different Data Mining (DM) algorithms are tested for five different scenarios. The scenarios combine information about the mother’s physical characteristics and habits, and the gestation. Results are promising and the best model achieved a sensitivity of 91,4% and a specificity of 99%. Good results were also achieved without considering the gestational age, which showed that the use of DM might be a good alternative to the traditional medical imaging exams in the prediction of LBW early in the pregnancy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Poole, K.L., Schmidt, L.A., Missiuna, C., Saigal, S., Boyle, M.H., Van Lieshout, R.J.: Childhood motor coordination and adult psychopathology in extremely low birth weight survivors. J. Affect. Disord. 190, 294–299 (2016). https://doi.org/10.1016/j.jad.2015.10.031
Mañalich, R., Reyes, L., Herrera, M., Melendi, C., Fundora, I.: Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 58(2), 770–773 (2000). https://doi.org/10.1046/j.1523-1755.2000.00225.x
Wolke, D.: Born extremely low birth weight and health related quality of life into adulthood. J. Pediatr. 179, 11–12 (2016). https://doi.org/10.1016/j.jpeds.2016.09.012
de Castro, E.C.M., Leite, Á.J.M., de Almeida, M.F.B., Guinsburg, R.: Perinatal factors associated with early neonatal deaths in very low birth weight preterm infants in northeast brazil. BMC Pediatr. 14(1), 312 (2014)
Bahado-Singh, R.O., Dashe, J., Deren, O., Daftary, G., Copel, J.A., Ehrenkranz, R.A.: Prenatal prediction of neonatal outcome in the extremely low-birth-weight infant. Am. J. Obstet. Gynecol. 178(3), 462–468 (1998). https://doi.org/10.1016/S0002-9378(98)70421-1
Perez-Roche, T., Altemir, I., Giménez, G., Prieto, E., González, I., Peña-Segura, J.L., Castillo, O., Pueyo, V.: Effect of prematurity and low birth weight in visual abilities and school performance. Res. Dev. Disabil. 59, 451–457 (2016). https://doi.org/10.1016/j.ridd.2016.10.002
Dimassi, K., Douik, F., Ajroudi, M., Triki, A., Gara, M.F.: Ultrasound fetal weight estimation: how accurate are we now under emergency conditions? Ultrasound Med. Biol. 41(10), 2562–2566 (2015). https://doi.org/10.1016/j.ultrasmedbio.2015.05.020
Khalil, A., D’antonio, F., Dias, T., Cooper, D., Thilaganathan, B.: Ultrasound estimation of birth weight in twin pregnancy: comparison of biometry algorithms in the stork multiple pregnancy cohort. Ultrasound Obstet. Gynecol. 44(2), 210–220 (2014). https://doi.org/10.1002/uog.13253
Yadav, H., Lee, N.: Maternal factors in predicting low birth weight babies. Med. J. Malays. 68(1), 44–47 (2012)
Portela, F., Santos, M.F., Silva, Á., Rua, F., Abelha, A., Machado, J.: Preventing patient cardiac arrhythmias by using data mining techniques. In: 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), pp. 165–170. IEEE (2014). https://doi.org/10.1109/IECBES.2014.7047478
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 37 (1996)
Brandao, A., Pereira, E., Portela, F., Santos, M.F., Abelha, A., Machado, J.: Predicting the risk associated to pregnancy using data mining. In: Proceedings of the International Conference on Agents and Artificial Intelligence, ICAART 2015, vol. 2, Lisbon, Portugal. SciTePress (2015)
Khademolqorani, S., Hamadani, A.Z.: An adjusted decision support system through data mining and multiple criteria decision making. Procedia Soc. Behav. Sci. 73, 388–395 (2013). https://doi.org/10.1016/j.sbspro.2013.02.066
Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011). https://doi.org/10.1007/978-1-4899-7993-3_104-2
Castaneda, C., Nalley, K., Mannion, C., Bhattacharyya, P., Blake, P., Pecora, A., Goy, A., Suh, K.S.: Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J. Clin. Bioinform. 5(1), 4 (2015). https://doi.org/10.1186/s13336-015-0019-3
Pereira, S., Portela, F., Santos, M.F., Machado, J., Abelha, A.: Predicting type of delivery by identification of obstetric risk factors through data mining. Procedia Comput. Sci. 64, 601–609 (2015)
Naik, A., Samant, L.: Correlation review of classification algorithm using data mining tool: WEKA, Rapidminer, Tanagra, Orange and Knime. Procedia Comput. Sci. 85, 662–668 (2016)
Yadav, S.K., Bharadwaj, B., Pal, S.: Data mining applications: a comparative study for predicting student’s performance. arXiv preprint arXiv:1202.4815 (2012)
Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: Crisp-dm 1.0 step-by-step data mining guide (2000)
Acknowledgments
This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Loreto, P., Peixoto, H., Abelha, A., Machado, J. (2019). Predicting Low Birth Weight Babies Through Data Mining. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S. (eds) New Knowledge in Information Systems and Technologies. WorldCIST'19 2019. Advances in Intelligent Systems and Computing, vol 932. Springer, Cham. https://doi.org/10.1007/978-3-030-16187-3_55
Download citation
DOI: https://doi.org/10.1007/978-3-030-16187-3_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16186-6
Online ISBN: 978-3-030-16187-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)