Skip to main content

Foundations of a DPLL-Based Solver for Fuzzy Answer Set Programs

  • Conference paper
  • First Online:
Computational Intelligence (IJCCI 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 829))

Included in the following conference series:

Abstract

Recent years have witnessed the effort to extend answer set programming (ASP) with properties of fuzzy logic. The result of this combination is fuzzy answer set programming (FASP), a powerful framework for knowledge representation and non-monotonic reasoning with graded levels of truth. The various results in solving FASP make use of transformations into fuzzy satisfiability (SAT) problems, optimization programs, satisfiability modulo theories (SMT), or classical ASP, each of which comes with limitations or scaling problems. Moreover, most of the research revolves around Gödel and Łukasiewicz semantics. The former approach is elegant in its attempt to generalize well-known methods in classical ASP to the fuzzy case. In our work we seek to extend this approach under the product semantics, utilizing the fuzzy generalization of the DPLL algorithm. As such, we design the inner works of a DPLL-based fuzzy SAT solver for propositional product logic, which should provide foundations for the technical implementation of the solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not explicitly refer to the properties and neutral elements of \({\pmb {\vee }}\), \({\pmb {\wedge }}\).

  2. 2.

    This is because we can regard rules as residual implicators.

  3. 3.

    Constants in the open interval (0, 1).

  4. 4.

    With the decreasing connective precedence: \(\lnot \), \({\Delta }\), \( { \& \ }\), \(\eqcirc \), \(\prec \), \(\wedge \), \(\vee \), \(\rightarrow \), \(\leftrightarrow \).

  5. 5.

    With the decreasing operator precedence: \(\pmb \sim \), \({\pmb {\Delta }}\), \({\cdot }\), \({\pmb {\eqcirc }}\), \({\pmb {\prec }}\), \({\pmb {\wedge }}\), \({\pmb {\vee }}\), \({\pmb {\Rightarrow }}\).

References

  1. Alviano, M., Amendola, G., Peñaloza, R.: Minimal undefinedness for fuzzy answer sets. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4–9, 2017, San Francisco, California, USA, pp. 3694–3700. AAAI Press (2017). http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14309

  2. Alviano, M., Peñaloza, R.: Fuzzy answer set computation via satisfiability modulo theories. TPLP 15(4–5), 588–603 (2015). https://doi.org/10.1017/S1471068415000241

    Article  MathSciNet  MATH  Google Scholar 

  3. Alviano, M., Pealoza, R.: Fuzzy answer sets approximations. Theory Pract. Log. Program. 13(4–5), 753–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baaz, M., Hájek, P., Švejda, D., Krajíček, J.: Embedding logics into product logic. Stud. Log. 61(1), 35–47 (1998). https://doi.org/10.1023/A:1005026229560

    Article  MathSciNet  MATH  Google Scholar 

  5. Blondeel, M., Schockaert, S., De Cock, M., Vermeir, D.: NP-completeness of fuzzy answer set programming under Lukasiewicz semantics, pp. 43–50 (8 2012)

    Google Scholar 

  6. Bobillo, F., Straccia, U.: A fuzzy description logic with product t-norm. In: 2007 IEEE International Fuzzy Systems Conference, pp. 1–6 (2007). https://doi.org/10.1109/FUZZY.2007.4295443

  7. Brys, T., Drugan, M.M., Bosman, P.A., De Cock, M., Nowé, A.: Solving satisfiability in fuzzy logics by mixing cma-es. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO ’13, pp. 1125–1132. ACM, New York, NY, USA (2013). https://doi.org/10.1145/2463372.2463510

  8. Clark, K.L.: Negation as failure., pp. 293–322. Springer US, Boston, MA (1978). https://doi.org/10.1007/978-1-4684-3384-5_11

  9. Dantzig, G.B.: Origins of the simplex method. A History of Scientific Computing, pp. 141–151. ACM, New York, NY, USA (1990). https://doi.org/10.1145/87252.88081

    Chapter  Google Scholar 

  10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers (2012)

    Google Scholar 

  11. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)

    Google Scholar 

  12. Guller, D.: Expanding Gödel Logic with Truth Constants and the Equality, Strict Order, Delta Operators, pp. 241–269. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-48506-5_13

    Book  Google Scholar 

  13. Guller, D.: A DPLL procedure for the propositional product logic. In: Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2013). pp. 213–224. INSTICC, SciTePress (2013). https://doi.org/10.5220/0004557402130224

  14. Guller, D.: An order hyperresolution calculus for Gödel logic with truth constants and equality, strict order, delta. In: 2015 7th International Joint Conference on Computational Intelligence (IJCCI), vol. 2, pp. 31–46 (2015)

    Google Scholar 

  15. Guller, D.: Technical foundations of a DPLL-based SAT solver for propositional product logic (2016), Unpublished manuscript

    Google Scholar 

  16. Hähnle, R.: Many-valued logic and mixed integer programming. Ann. Math. Artif. Intell. 12(3), 231–263 (1994). https://doi.org/10.1007/BF01530787

    Article  MathSciNet  MATH  Google Scholar 

  17. Hansen, N.: The CMA Evolution Strategy: A Comparing Review, pp. 75–102. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/3-540-32494-1_4

    Book  Google Scholar 

  18. Janssen, J., Schockaert, S., Vermeir, D., De Cock, M.: Answer Set Programming for Continuous Domains: A Fuzzy Logic Approach. Atlantis Computational Intelligence Systems. Atlantis Press, Paris (2012). https://books.google.sk/books?id=OLjCFm8KpZIC

  19. Janssen, J., Schockaert, S., Vermeir, D., Cock, M.D.: Reducing fuzzy answer set programming to model finding in fuzzy logics (2011). http://arxiv.org/abs/1104.5133

  20. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006). https://doi.org/10.1145/1149114.1149117

    Article  MathSciNet  MATH  Google Scholar 

  21. Lifschitz, V.: Action languages, answer sets and planning. The Logic Programming Paradigm: a 25-Year Perspective, pp. 357–373. Springer, Berlin (1999). http://www.cs.utexas.edu/users/ai-lab/?lif99

  22. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by sat solvers. Artif. Intell. 157(1), 115–137 (2004). https://doi.org/10.1016/j.artint.2004.04.004

    Article  MathSciNet  MATH  Google Scholar 

  23. Mushthofa, M., Schockaert, S., Cock, M.D.: A finite-valued solver for disjunctive fuzzy answer set programs. In: Proceedings of the Twenty-first European Conference on Artificial Intelligence, ECAI’14, pp. 645–650. IOS Press, Amsterdam, The Netherlands (2014). https://doi.org/10.3233/978-1-61499-419-0-645

  24. Mushthofa, M., Schockaert, S., De Cock, M.: Solving Disjunctive Fuzzy Answer Set Programs, pp. 453–466. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-23264-5_38

    Book  MATH  Google Scholar 

  25. Mushthofa, M., Schockaert, S., De Cock, M.: Computing attractors of multi-valued gene regulatory networks using fuzzy answer set programming. In: Proceedings of the 2016 IEEE International Conference on Fuzzy Systems FUZZ-IEEE’2016. pp. 1955–1962. IEEE (2016)

    Google Scholar 

  26. Simons, P., Niemel, I., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1), 181–234 (2002). https://doi.org/10.1016/S0004-3702(02)00187-X

    Article  MathSciNet  MATH  Google Scholar 

  27. Uhliarik, I.: Solving fuzzy answer set programs in product logic. In: Proceedings of the 9th International Joint Conference on Computational Intelligence - Volume 1: IJCCI, pp. 367–372. INSTICC, SciTePress (2017). https://doi.org/10.5220/0006518303670372

  28. Van Nieuwenborgh, D., De Cock, M., Vermeir, D.: Computing Fuzzy Answer Sets Using DLVHEX, pp. 449–450. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74610-2_40

    Book  Google Scholar 

  29. Van Nieuwenborgh, D., De Cock, M., Vermeir, D.: An introduction to fuzzy answer set programming. Ann. Math. Artif. Intell. 50(3), 363–388 (2007). https://doi.org/10.1007/s10472-007-9080-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research reported in this paper was supported by the grant UK/244/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivor Uhliarik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uhliarik, I. (2019). Foundations of a DPLL-Based Solver for Fuzzy Answer Set Programs. In: Sabourin, C., Merelo, J.J., Madani, K., Warwick, K. (eds) Computational Intelligence. IJCCI 2017. Studies in Computational Intelligence, vol 829. Springer, Cham. https://doi.org/10.1007/978-3-030-16469-0_6

Download citation

Publish with us

Policies and ethics