Skip to main content

Modeling Hybrid Indicators for Stock Index Prediction

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2018 2018)

Abstract

The study aims to assess the major predictors of stock index closing using select set of technical and fundamental indicators from market data. Here two of major service sector specific indices of Bombay stock exchange (BSE) and National stock exchange (NSE) with historical data from 2004 up to 2016 are considered. By experimental simulation, the predictive estimates of index closing using automatic linear modeling, time-series based forecasting, and also artificial neural network models are analyzed. While linear models show better performance for BSE, artificial neural network based models exhibit higher predictive modeling accuracy for NSE. The design aspects are outlined for augmenting intelligent market prediction systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, A., Nath, B., Mahanti, P.K.: Hybrid intelligent systems for stock market analysis. In: International Conference on Computational Science, pp. 337–345. Springer, Heidelberg, May 2001

    Google Scholar 

  2. Arjun, R., D’Souza, S.C.: Software analytics platform for converged healthcare technologies. Procedia Technol. 24, 1431–1435 (2016)

    Article  Google Scholar 

  3. Arjun, R., Suprabha, K.R.: Predictive modeling of stock indices closing from web search trends. arXiv preprint arXiv:1804.01676 (2018)

  4. Attigeri, G.V., Manohara Pai, M.M., Pai, R.M., Nayak, A.: Stock market prediction: a big data approach. In: 2015 IEEE Region 10 Conference, TENCON 2015, pp. 1–5. IEEE, November 2015

    Google Scholar 

  5. Bebarta, D.K., Biswal, B., Dash, P.K.: Polynomial based functional link artificial recurrent neural network adaptive system for predicting Indian stocks. Int. J. Comput. Intell. Syst. 8, 1004–1016 (2015). https://doi.org/10.1080/18756891.2015.1099910

    Article  Google Scholar 

  6. Charumathi, B., Suraj, E.S.: An artificial neural network approach on improving relative valuation accuracy for bank stocks. India Asian Res. J. Bus. Manag. (2015)

    Google Scholar 

  7. Chen, Y., Abraham, A., Yang, J., Yang, B.: Hybrid methods for stock index modeling. In: International Conference on Fuzzy Systems and Knowledge Discovery, pp. 1067–1070. Springer, Heidelberg, August 2005

    Google Scholar 

  8. Chen, Y., Abraham, A.: Hybrid-learning methods for stock index modeling. In: Artificial Neural Networks in Finance and Manufacturing, pp. 64–79. IGI Global (2006)

    Google Scholar 

  9. Chen, Y., Peng, L., Abraham, A.: Stock index modeling using hierarchical radial basis function networks. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) Knowledge-Based Intelligent Information and Engineering Systems, pp. 398–405. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Choudhury, S.S., Sen, M.: Trading in Indian stock market using ANN: a decision review. Adv. Model. Anal. A 54(2), 252–262 (2017)

    Google Scholar 

  11. Dutta, G., Jha, P., Laha, A.K., Mohan, N.: Artificial neural network models for forecasting stock price index in the Bombay stock exchange. J. Emerg. Market Finan. 5(3), 283–295 (2006)

    Article  Google Scholar 

  12. Jadhav, S., Dange, B., Shikalgar, S.: Prediction of stock market indices by artificial neural networks using forecasting algorithms. In: Dash, S.S., Das, S., Panigrahi, B.K. (eds.) International Conference on Intelligent Computing and Applications, pp. 455–464. Springer, Singapore (2018)

    Chapter  Google Scholar 

  13. Melin, P., Mancilla, A., Lopez, M., Mendoza, O.: A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting. Appl. Soft Comput. 7, 1217–1226 (2007). https://doi.org/10.1016/j.asoc.2006.01.009

    Article  Google Scholar 

  14. Melin, P., Soto, J., Castillo, O., Soria, J.: A new approach for time series prediction using ensembles of ANFIS models. Expert Syst. Appl. 39, 3494–3506 (2012). https://doi.org/10.1016/j.eswa.2011.09.040

    Article  Google Scholar 

  15. Nayak, S.C., Misra, B.B., Behera, H.S.: An adaptive second order neural network with genetic-algorithm-based training (ASONN-GA) to forecast the closing prices of the stock market. Int. J. Appl. Metaheuristic Comput. (IJAMC) 7(2), 39–57 (2016)

    Article  Google Scholar 

  16. Nishmitha, N., Arjun, R.: Financial technology implications: Indian context. ResearchGate (2017). https://doi.org/10.13140/RG.2.2.34551.11

  17. Palsson, M.S., Gu, M., Ho, J., Wiseman, H.M., Pryde, G.J.: Experimentally modeling stochastic processes with less memory by the use of a quantum processor. Sci. Adv. 3(2), e1601302 (2017)

    Article  Google Scholar 

  18. Patel, J., Shah, S., Thakkar, P., Kotecha, K.: Predicting stock market index using fusion of machine learning techniques. Expert Syst. Appl. 42(4), 2162–2172 (2015)

    Article  Google Scholar 

  19. Patra, B., Padhi, P.: Backtesting of value at risk methodology: analysis of banking shares in India. Margin J. Appl. Econ. Res. 9, 254–277 (2015). https://doi.org/10.1177/0973801015583739

    Article  Google Scholar 

  20. Prasad, K., Suprabha, K.R.: Anomalies in maturity GAP: evidence from scheduled commercial banks in India. Procedia Econ. Finan. 11, 423–430 (2014)

    Article  Google Scholar 

  21. Rihani, V., Garg, S.K.: Neural networks for the prediction of stock market. IETE Tech. Rev. 23, 113–117 (2006). https://doi.org/10.1080/02564602.2006.11657936

    Article  Google Scholar 

  22. Roy, S.S., Mittal, D., Basu, A., Abraham, A.: Stock market forecasting using LASSO linear regression model. In: Abraham, A., Krömer, P., Snasel, V. (eds.) Afro-European Conference for Industrial Advancement, pp. 371–381. Springer International Publishing, Cham (2015)

    Chapter  Google Scholar 

  23. Samadder, S., Ghosh, K., Basu, T.: Search for the periodicity of the prime Indian and American stock exchange indices using date-compensated discrete Fourier transform. Chaos, Solitons Fractals 77, 149–157 (2015). https://doi.org/10.1016/j.chaos.2015.05.020

    Article  MathSciNet  Google Scholar 

  24. Sezer, O.B., Ozbayoglu, A.M., Dogdu, E.: An artificial neural network-based stock trading system using technical analysis and big data framework. In: Proceedings of the SouthEast Conference, pp. 223–226. ACM, April 2017

    Google Scholar 

  25. Sharma, N., Juneja, A.: Combining of random forest estimates using LSboost for stock market index prediction. In: 2017 2nd International Conference for Convergence in Technology (I2CT), pp. 1199–1202. IEEE, April 2017

    Google Scholar 

  26. Soto, J., Melin, P., Castillo, O.: Time series prediction using ensembles of ANFIS models with genetic optimization of interval type-2 and type-1 fuzzy integrators. Int. J. Hybrid Intell. Syst. 11, 211–226 (2014). https://doi.org/10.3233/HIS-140196

    Article  Google Scholar 

  27. Valença, I., Lucas, T., Ludermir, T., Valença, M.: Selecting variables with search algorithms and neural networks to improve the process of time series forecasting. Int. J. Hybrid Intell. Syst. 8, 129–141 (2011). https://doi.org/10.3233/HIS-2011-0134

    Article  Google Scholar 

  28. White, H.: Economic prediction using neural networks: the case of IBM daily stock returns. In: Proceedings of the IEEE International Conference on Neural Networks, San Diego, vol. 2, pp. 451–458 (1988)

    Google Scholar 

Download references

Acknowledgments

The first author acknowledges National Institute of Technology Karnataka, Surathkal for permitting the usage of resources and providing research scholarship support. The authors thank reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Arjun .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 1. Summary of simulations (Source: Simulation outputs)
Fig. 3.
figure 3

(source: SPSS)

Automatic Linear Modeling (ALM) in NSE index data-sets

Fig. 4.
figure 4

(source: SPSS)

ARIMA model in BSE index data

Fig. 5.
figure 5

(source: SPSS)

MLP based artificial neural network model for NSE

Fig. 6.
figure 6

(source: gretl)

OLS model estimates for BSE index data

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arjun, R., Suprabha, K.R. (2020). Modeling Hybrid Indicators for Stock Index Prediction. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2018 2018. Advances in Intelligent Systems and Computing, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-16657-1_18

Download citation

Publish with us

Policies and ethics