Skip to main content

Fractional Order Extended Kalman Filter for Attitude Estimation

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2018 2018)

Abstract

Attitude estimation is one of the core frameworks for a vehicle navigating with the help of inertial sensors such as accelerometer, gyroscope and magnetometer. Measurements obtained by these sensors are fused together to obtain vehicle attitude in the form of roll, pitch and yaw angles. Several state estimation frameworks have been proposed in the literature of which the extended Kalman filter and the complementary filtering based schemes are most popular. In this paper, the Fractional Order Extended Kalman Filter (FKF) approach is designed for estimating attitude with the help of inertial sensors in the attitude heading and reference system architecture. The FKF scheme is applied on the sensor data captured from commercial navigation units and compared with reference attitude for analysis. The simulations are carried out for varying fractional orders of different states and the corresponding results depict the dependency of estimation accuracy on system order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley, Hoboken (2006)

    Book  Google Scholar 

  2. Kottath, R., et al.: Window based multiple model adaptive estimation for navigational framework. Aerosp. Sci. Technol. 50, 88–95 (2016)

    Article  Google Scholar 

  3. Poddar, S., et al.: Adaptive sliding Kalman filter using nonparametric change point detection. Measurement 82, 410–420 (2016)

    Article  Google Scholar 

  4. Tepljakov, A.: Fractional-Order Modeling and Control of Dynamic Systems. Springer, Heidelberg (2017)

    Book  Google Scholar 

  5. Sierociuk, D., Dzieliński, A.: Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comput. Sci. 16, 129–140 (2006)

    MathSciNet  Google Scholar 

  6. Loverro, A.: Fractional calculus: history, definitions and applications for the engineer. Rapport technique, pp. 1–28. Department of Aerospace and Mechanical Engineering, University of Notre Dame (2004)

    Google Scholar 

  7. Podlubny, I.: Fractional-order systems and PI/sup/spl lambda//D/sup/spl mu//-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  Google Scholar 

  8. Monje, C.A., Liceaga-Castro, E., Liceaga-Castro, J.: Fractional order control of an unmanned aerial vehicle (UAV). In: IFAC Proceedings Volumes, vol. 41, no. 2, pp. 15285–15290 (2008)

    Google Scholar 

  9. Zhang, X.: Relationship between integer order systems and fractional order systems and its two applications. IEEE/CAA J. Automatica Sinica (2016)

    Google Scholar 

  10. Wen, S., et al.: The study of fractional order controller with SLAM in the humanoid robot. Adv. Math. Phys. 2014 (2014)

    Google Scholar 

  11. Sierociuk, D., Ziubinski, P.: Fractional order estimation schemes for fractional and integer order systems with constant and variable fractional order colored noise. Circ. Syst. Sig. Process. 33(12), 3861–3882 (2014)

    Article  MathSciNet  Google Scholar 

  12. Wu, X., et al.: State estimation of nonlinear fractional order system with Lévy noises by using EKF. In: 2016 35th Chinese Control Conference (CCC). IEEE (2016)

    Google Scholar 

  13. Sadeghian, H., et al.: On the fractional-order extended Kalman filter and its application to chaotic cryptography in noisy environment. Appl. Math. Model. 38(3), 961–973 (2014)

    Article  MathSciNet  Google Scholar 

  14. Coopmans, C., Jensen, A.M., Chen, Y.: Fractional-order complementary filters for small unmanned aerial system navigation. J. Intell. Rob. Syst. 73(1–4), 429–453 (2014)

    Article  Google Scholar 

  15. Romanovas, M., et al.: Application of fractional sensor fusion algorithms for inertial mems sensing. Math. Model. Anal. 14(2), 199–209 (2009)

    Article  MathSciNet  Google Scholar 

  16. Titterton, D., Weston, J.L., Weston, J.: Strapdown Inertial Navigation Technology, vol. 17. IET (2004)

    Google Scholar 

  17. Kirkko-Jaakkola, M., Collin, J., Takala, J.: Bias prediction for MEMS gyroscopes. IEEE Sens. J. 12(6), 2157–2163 (2012)

    Article  Google Scholar 

  18. Sheng, H., Chen, Y., Qiu, T.: Fractional Processes and Fractional-Order Signal Processing: Techniques And Applications. Springer, Heidelberg (2011)

    Google Scholar 

  19. Scherer, R., et al.: The Grünwald-Letnikov method for fractional differential equations. Comput. Math Appl. 62(3), 902–917 (2011)

    Article  MathSciNet  Google Scholar 

  20. Etkin, B., Reid, L.D.: Dynamics of Flight: Stability and Control, vol. 3. Wiley, New York (1996)

    Google Scholar 

  21. Monje, C.A., et al.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, Heidelberg (2010)

    Book  Google Scholar 

  22. Brown, R.G., Hwang, P.Y.: Introduction to Random Signals and Applied Kalman Filtering, vol. 3. Wiley, New York (1992)

    Google Scholar 

  23. Gelb, A.: Applied Optimal Estimation. MIT Press, Cambridge (1974)

    Google Scholar 

  24. Poddar, S., et al.: Tuning of GPS aided attitude estimation using evolutionary algorithms. Int. J. Intell. Unmanned Syst. 4(1), 23–42 (2016)

    Article  Google Scholar 

  25. Madyastha, V.K., et al.: A novel INS/GPS fusion architecture for aircraft navigation. In: 2012 15th International Conference on Information Fusion (FUSION). IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Poddar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, N., Rufus, E., Karar, V., Poddar, S. (2020). Fractional Order Extended Kalman Filter for Attitude Estimation. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2018 2018. Advances in Intelligent Systems and Computing, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-16657-1_77

Download citation

Publish with us

Policies and ethics