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Abstract. In ecology, one of the main interests is to understand species
population dynamics and to describe its link with various environmental
factors, such as habitat characteristics and climate. It is especially impor-
tant to study the behaviour of animal species that can hosts pathogens,
as they can be potential disease reservoirs and/or vectors. Pathogens
of vector borne diseases can only be transmitted from an infected to
a susceptible individual by a vector. Thus, vector ecology is a crucial
factor influencing the transmission dynamics of vector borne diseases
and their complexity. The formulation of models able to predict vector
abundance are essential tools to implement intervention plans aiming to
reduce the spread of vector-borne diseases (e.g. West Nile Virus). The
goal of this paper is to explore the possible advantages in using Ge-
netic Programming (GP) in the field of vector ecology. In this study, we
present the application of GP to predict the distribution of Culex pipi-
ens, a mosquito species vector of West Nile virus (WNV), in Piedmont,
Italy. Our modelling approach took into consideration the ecological fac-
tors which affect mosquitoes abundance. Our results showed that GP
was able to outperform a statistical model that was used to address
the same problem in a previous work. Furthermore, GP performed an
implicit feature selection, discovered automatically relationships among
variables and produced fully explorable models.

Keywords: Genetic Programming · Ecological Modeling · Prediction ·
West Nile Virus
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1 Introduction

West Nile virus (WNV) is a zoonotic virus belonging to the Flaviviridae family,
genus Flavivirus, eventually neuropathogen for birds and mammals including
humans [1]. West Nile virus is transmitted by the bite of infected mosquitoes,
mainly belonging to the genus Culex [2]. The natural cycle (enzoonotic cycle)
of the virus involves the pathogen passing from mosquitoes to wild bird species
which can be reservoirs. The virus can infect several vertebrate species (mam-
mals, birds, reptiles) and, among mammals, humans and horses are considered
dead-end hosts [3] and can show clinical symptoms [4]. In humans, most WNV
infections occur asymptomatically: about 20% of infected individuals develop
a febrile disease, commonly called West Nile fever (WNF). In less than 1% of
cases the disease manifests itself in neuro-invasive form (usually encephalitis,
meningoencephalitis or flaccid paralysis) [5].

In Italy, the first WNV outbreak occurred in 1998 involving several horses
in the Tuscany region [6]. After the first outbreak of 1998, Italian public health
authorities implemented a national surveillance plan to detect WNV circulation
(in vectors and host) and quantify vector abundance [7]. Given the complexity of
the biological cycle of WNV, the control of its circulation requires the integration
of surveillance systems in different areas: entomological, veterinary and human.
The main objective of integrated surveillance is to detect early, through targeted
programmes, the circulation of WNV in birds, insects or mammals on the na-
tional territory. The early detection allows to assess the risk of transmission of
the disease to humans and to implement all available measures to prevent trans-
mission [8]. Culex pipiens is the most common mosquito species belonging to the
genus Culex in the northern hemisphere. Cx. pipiens mosquitoes are the princi-
pal vector for WNV in Europe, since they have ornithophilic and anthropophilic
subspecies, often inbreeded, and their populations are usually large [9, 10]. For
this reason, it is important to keep their abundance under control in order to
avoid the outbreak of cases of West Nile Disease (WND).

The main goal of our study is to explore the potential application of genetic
programming (GP) for an ecological problem, in particular to create a predictive
model for the abundance of Cx. pipiens in an eastern area of Piedmont region.
The obtained GP models are compared with a statistical model developed to
address the same problem in a previous work (Bisanzio et al., 2011) [11].

In the first section we present the available data and how they were collected.
Next, we describe the statistical model used to compare the performance of GP
and the results obtained using it. The third section contains the results obtained
by GP and the comparison with the statistical model via hypothesis tests. Last
section concerns conclusions and possible improvements.

2 Data Set

Mosquito data used in this study are based on entomological collections per-
formed during the surveillance Piedmont program started by ”Regione Piemonte”
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through local Municipalities Agreements, and subsequently carried out by ”Isti-
tuto per le Piante da Legno e l’Ambiente” (IPLA) from 2002 to 2006. The area
of study covered a territory of 987 km2 in the eastern part of the Piedmont re-
gion, where the Municipalities Agreement of Casale Monferrato operated. This
territory offers favourable habitats for the reproduction of the local Cx. pipiens
mosquitoes [11], therefore it is suitable for the introduction and amplification of
WNV. From now on when we mention mosquitoes we will refer to the ones of
Cx. pipiens species. Half of the territory is made up of hills, with an average
elevation of 268m, and the other half of plains where the landscape is mainly
composed of mixed agricultural patches (72.2%, mainly in the northeast), rice
fields (14.2%, mainly concentrated in the north), deciduous tree forests (8.6%,
in the south), urban areas (3.1%) and the river Po with its tributaries (1.9%, in
the north). The climate is characterized by cold winters (0.4◦C on average) and
hot-warm summers (24.0◦C on average), with heavy rainfall in spring and au-
tumn (about 600 mm/yr) [12]. To acquire mosquitoes abundance, 36 sampling
location were selected on the territory, at a minimum distance of 5 km from
each other, in areas suitable for mosquito proliferation (near rice fields, forests,
urban suburbs). Captures of mosquitoes were taken at night weekly using CO2-
baited trap from the beginning of May to late September, which is the main
period of mosquitoes activity in the area, for a total of 20 collections per year.
In addition, various environmental and ecological parameters were collected as
influential variables of mosquitoes abundance. The previous work of Bisanzio et
al. [11] selected among all the variables the ones deemed to be the most effective
in predicting the abundance and the spatial distribution of mosquitoes. Table 1
lists the final predictors after processing data as in [11].

Table 1. Description of variables chosen as mosquitoes predictors.

Predictor Description
variable

TWEEK The average land surface temperature 8-15 days prior to
trapping [13].

NDVI 16-days average of normalized difference vegetation index
[13].

RAIN Cumulative rainfall 10-17 days prior to trapping. [12]
ELEV Elevation of the sample location [13].
DISTU Distance of the sampling location from the nearest urban

area.
DISTR Distance of the sampling location from the nearest rice

field.
DISTW Distance of the sampling location from the nearest water

source.
DISTF Distance of the sampling location from the nearest forest.
RICEA Area of the nearest rice field.
SIN Value of a sinusoidal curve with phase 1 year.
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TWEEK and RAIN refer to time windows that capture respectively the
impact of the temperature and the rain on the abundance of mosquitoes. The
parameter NDVI reflects environmental changes due to human agricultural ac-
tivities that influence the distribution of the vector. ELEV takes into account
altitude differences within the study area. The effect of the surrounding envi-
ronment is considered through the variables DISTU, DISTR, DISTW, DISTF
and RICEA. SIN represents the seasonal pattern of mosquitoes abundance as
a positive sinusoidal curve with a peak in period the 12th week of collection
(end of July-beginning of August), when mosquitoes are usually more numer-
ous. For our experiments, the years 2002-2006 had been taken into account. The
main reasons for this choice are the fact that during this period there was the
highest spatial coverage of CO2baited-traps and that mosquitoes control actions
in the region were minimal. Our dataset was composed by the number of cap-
tured mosquitoes in each trap for each of the 20 periods, joined with the related
predictors values.

3 Classical Statistical Approach

As mentioned in Section 2, mosquitoes abundance in eastern Piedmont had
already been investigated in Bisanzio et al. [11]. The authors used a spatio-
temporal Generalized Linear Mixed Model (GLMM) [14] to study the associ-
ation between the abundance of Cx. pipiens and environmental and ecological
variables. They formulated and tested 169 GLMM models and selected the best
through the Deviance Information Criterion (DIC) [15]. The parameters of the
derived model were tuned according to data using a Bayesian approach based
on the Integrated Nested Laplace Approximation (INLA) [16]. For any further
detail refer to [11]. In order to investigate the predictive behaviour of a GP
approach, we borrowed the selected best model and the INLA technique and
we fitted again the statistical model dividing the data in a training and a test
dataset. We chose data of weekly collection from 2002 to 2005 as the training
set and the 2006 trapping as the test set, which contains unseen data used to
validate model performances. This choice follows the natural order of the years,
therefore we learn from the past and we test on the future what we have learned.
The resulting model is:

y = I +β1∗RAIN +β2∗TWEEK +β3∗SIN +β4∗ELEV +β5∗DISTU +RNDtrap
(1)

where the variables are those described in Section 2, RNDtrap is an unstructured
spacial random effect to represent unaccountable differences in each trap, and
I is the intercept of the model. The estimated parameters according to INLA
technique are reported in Table 2.

The GLMM model obtained a training Root Mean Square Error (RMSE) of
70.32851 and a test RMSE of 88.58552. We can notice that:

– Cumulative rain (RAIN ) does not seem to have a significant effect in pre-
dicting abundance, as the credible interval contains zero.
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Table 2. Fitted terms of the GLMM applied to predict mosquitoes abundance.

Predictors Coefficients (Mean) Credible Intervals

Intercept 1.4831 (0.7400, 2.2303)
RAIN 0.0018 (-0.0006, 0.0043)
TWEEK -0.1285 (-0.1441, -0.1129)
SIN 7.8351 (7.4870, 8.1846)
ELEV -0.0069 (-0.0104, -0.0035)
DISTU -0.1920 (-0.3260, -0.0583)

Random Effects Mean St. Deviation

RNDtrap 2.7468 0.7143

– The average temperature of about a week before (TWEEK ) has a significant
negative effect on the amount of mosquitoes. This result, although opposite
to that of a previous work [11], is confirmed in a more recent article [17]
in which it is pointed out that high temperatures lead to a decrease of Cx.
pipiens abundance.

– The seasonality variable (SIN ) is quite important and has a positive effect
on the abundance. As expected, the closer to the period of mosquitoes high
activity, the greater the abundance.

– The elevation (ELEV ) has a negative effect on the expected amount of Cx.
pipiens. At high altitudes, environmental conditions would not support their
proliferation.

– Distance from the nearest urban center (DISTU ) has a significant negative
effect on the amount of Cx. pipiens. Thus, the closer to towns, the higher
the abundance. This could be explained by the possible presence of stagnant
water, which is an important resource for mosquitoes development. Indeed, in
an urban environment there is a large number of small breeding sites, mainly
underground, particularly adapted for the development of Cx. pipiens. The
number of potential hosts is large, too.

4 Application of GP

4.1 Experimental Setting

In this work we used a tree-based GP where the individuals are represented in
a tree structure. The set of terminal nodes is composed by the 10 variables de-
scribed in Section 2 and a random constant between 0 and 1 generated during the
initialization phase, while the function set is F = {plus, minus, times, kozadivide}
where plus, minus, times are the classical binary addition, subtraction and mul-
tiplication operators and kozadivide is the division protected as in [18] that
returns 1 if the second argument (i.e. the divisor) is 0. The chosen fitness func-
tion was the Root Mean Square Error (RMSE), transforming the problem into
a minimization one, since lower values represent better solutions. As the aim
of this investigation was to explore the possible application of GP in ecological
modeling, we prioritized simplicity considering the parameters default setting
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proposed in GPLab [19], the GP toolbox implemented in MATLAB that we
used for our experiments. The experimental parameters setting is provided in
Table 3.

Table 3. GP parameters used for experiments.

Parameter Setting

Population size 500
Maximum number of generations 100
Initialization method Ramped Half-and-Half [18]
Selection method Lexicographic Parsimony Pressure [20]
Elitism Survival of the best (’keepbest’)
Subtree Crossover rate 0.9
Subtree Mutation rate 0.1
Maximum tree depth 17

Each experiment was repeated 60 times, to ensure a large enough set of
simulations in order to investigate the algorithm performance. In each run the
algorithm was trained using mosquitoes collection data from 2002 to 2005 and
the best model found in each run was tested on mosquitoes abundance prediction
of 2006.

4.2 Experimental Results

Figure 1 shows the median training and test RMSEs at each generation over
the 60 runs. We chose the median value due to its robustness to outliers which
can emerge in such a stochastic algorithm. The evolution of the error reveals
the ability of GP in learning the relationship between variables. Moreover, the
constant decrease of the test error indicates that no overfitting is occurring,
therefore the algorithm is learning with generalization.

At the end of each of the 60 runs of the experiment, we obtained a best
solution. The median test RMSE obtained by considering these 60 models is
83.63461, which is less than test RMSE of the GLMM (see Section 5 for the sta-
tistical comparison of the performances of the two approaches). After removing
possible introns from each best individual, we decided to observe the median
frequency with which the variables appear in the terminal nodes of the best
solutions. This consideration could give a general idea of which variables play a
key role in achieving the best results, while also highlighting variables that could
be not so important for explaining the variability of the dependant variable. Ta-
ble 4 contains the median frequencies obtained for each variable considering the
60 best solutions.

SIN and DISTF are the most frequent variables on median, suggesting that
these variables could be relevant predictors for mosquito abundance. RAIN,
ELEV and RICEA seem to be not so relevant, since their median frequency
is 0.
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Fig. 1. GP evolution plots. The blue line represents the median RMSE on the training
set, while the green line represents the median RMSE on the test set. The bars describe
the range between the 1st and 3rd quartiles.

Table 4. Median frequency of each variable in the best 60 solutions.

Variable Median frequency

X1 - RAIN 0
X2 - TWEEK 4
X3 - SIN 27.5
X4 - ELEV 0
X5 - NDVI 1
X6 - DISTU 4
X7 - DISTR 7
X8 - DISTW 4.5
X9 - DISTF 12
X10 - RICEA 0
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Among the 60 best solutions, we chose as a prediction model the expression
that produced the lowest RMSE on the test set. The selected solution obtained a
training RMSE of 65.99388 and a test RMSE of 81.41473. Equation (2) represents
the selected model for mosquitoes prediction.

Y =X9 +
X3

X2
6

− X8

X6
−X3 +X3

{
X3

[
X3X

2
6

X7X6 + 0.036707 (X6 − 1)
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X3

(
X2 +X9 −X7 −

X2

X10

)
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+
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2X2 − 2X7 +

X3

X2
6

)
−X7

)
−X6

]
+
X3

X2
6

− 1

}
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From Equation (2) it can be noticed that some variables are missing, in
particular RAIN (X1), ELEV (X4) and NDVI (X5). This is due to GP’s ability
to automatically perform an implicit features selection; if solutions with smaller
number of variables have a better fitness, they survive into the population, since
fitness is the only principle on which individuals are selected. By observing the
frequency with which the variables have been selected, it is possible to find out
which of them are responsible for good performances with their recurrence.

Table 5. Frequency of each variable in the best model.

Variable Frequency

X1 - RAIN 0
X2 - TWEEK 4
X3 - SIN 17
X4 -ELEV 0
X5 - NDVI 0
X6 - DISTU 14
X7 - DISTR 10
X8 - DISTW 1
X9 - DISTF 4
X10 - RICEA 1

Table 5 shows that SIN is the most frequent variable, and the fact that it
was a significant predictor also in the previous GLMM gives greater credence to
its importance. Although the model (2) found by GP is very complex, it is still
possible to interpret it and highlight the effect of some variables:

– SIN (X3) has a general positive effect on the amount of trapped mosquitoes:
as expected, as you approach the peak of the mosquito season, the abundance
increases. This effect is also confirmed by the previous GLMM.
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– DISTF (X9) appears in the model as a standalone term, directly influencing
the abundance of mosquitoes. This fact may lead us to believe that it could
play an important role in the correct prediction. Moreover, it has a general
positive effect on the abundance of Cx. pipiens: the further a place is from
a forest, the more mosquitoes are expected to be trapped. This could be
justified by the fact that in the forest there are few habitats suitable as
breeding sites for this species. Moreover, another explanation could be that
CO2-baited traps close to woodlands may have less attraction than those
ones placed far, due to abundance of potential hosts for mosquitoes for Cx.
pipiens, such as various bird species.

– The average temperature of a week before, TWEEK (X2), has a general
positive effect on the abundance of collected mosquitoes. Mosquitoes need
to accumulate heat so that they can hatch from eggs, and consequently
develop.

– The distance from a urban centre, DISTU (X6), appears often negative at
numerator or positive at denominator, having basically a negative effect on
the abundance of Cx. pipiens. Indeed, the closer a place is to an urban area,
the more mosquitoes there are. In a urban area there are many breeding
sites for mosquitoes (e.g. catch basins and plant pot saucers).

– The distance from a water source, DISTW (X8), has a negative effect on
the abundance of Cx. pipiens. Water sources (e.g. rivers, lakes) provide
higher humidity rates that positively effect the presence and the survival of
mosquitoes. Thus, the closer a place is to a water source, the more mosquitoes
is likely to be captured.

– The distance from the nearest rice field, DISTR (X7), has in general a neg-
ative effect: the closer a place is to a rice field, the more mosquitoes are col-
lected. The dimension of the rice field, RICEA (X10), has a positive effect:
at the same distance from a rice field, it is expected that more mosquitoes
will be trapped in location with the largest rice field. Rice fields are indeed
a suitable habitat for mosquitoes.

The study area allows to evaluate the role of environmental variables at fine scale.
In general, it can be said that differences in habitat features have a greater impact
than differences in climate (temperature or rainfall) when studying a small area.

To validate the ability of the GP model in predicting mosquitoes abundance,
we generated a vector suitability map for August 2006, a period that includes the
peak of abundance. We represented the median numbers of predicted mosquitoes
against the median numbers of truly collected mosquitoes for each trap. Figure 2
shows a good prediction of high populated patterns, information that can be used
to identify areas at high risk of exposure to the virus.

5 Comparison with the Statistical Model

To further explore GP ability in prediction we compared the best models found
by GP over the 60 runs with the statistical model described in Section 3. We
assumed test RMSEs of best solutions followed a normal distribution, since this
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(a) Median number of mosquitoes pre-
dicted by GP.

(b) Median number of mosquitoes col-
lected.

Fig. 2. Prediction maps for mosquitoes in August 2006. Circles indicates the abundance
in each trap. Size and darkness increase with the number of mosquitoes

hypothesis was not rejected by Lilliefors test (p-value: 0.8137). Moreover, looking
at the Q-Q plot (Figure 3), the test RMSEs follow pretty well the line and are
almost all contained in the grey stip, supporting the normality hypothesis.
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Fig. 3. Q-Q plot for normality of the sample of GP test RMSEs.

We tested whether test RMSEs of the best GP solutions were significantly
different from test RMSE of the GLMM, performing a lower-tailed one-sample t-
test, with α = 0.01. We obtained an extremely significant p-value (< 2.2 ·10−16),
which indicates a significant difference between the performances of the two
methods, therefore GP outperforms the statistical model. Moreover we depicted
the best errors on 2006 prediction of both models using a boxplot representation.
From Figure 4 emerges that the models selected by GP have better results rather
than the GLMM model.
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Fig. 4. Boxplot of GP test RMSEs against test RMSE of the GLMM (red line).

To give an idea of how much is the difference we used the A statistics (also
called measure of stochastic superiority). It is a non-parametric effect size mea-
sure that quantifies the difference between two populations in terms of the prob-
ability that a score sampled at random from the first population will be greater
than a score sampled at random from the second [21]. Choosing as first popu-
lation the 60 test RMSEs of the best GP solutions and as second one the test
RMSE of the GLMM, we obtained an A measure equal to 0, indicating that GP
greatly outperforms the GLMM. From an ecological point of view, the relevance
of the performance difference between the two methods may be marginal, but
GP has proved to be consistent in obtaining numerically better results.

Focusing on the GP model with the lowest test RMSE (Equation 2), Figure 5
shows the median predicted values of abundance compared to the median ob-
served values for each of the 20 periods of 2006. We can notice that the GP model
was able to detect quite well the moments of greatest mosquito abundance, while
the GLMM missed the right peak of abundance.

6 Discussion

Some observations arise from the results achieved by GP and their compari-
son with the statistical model performance. It is interesting to notice that GP
gave some importance to a variable not particularly significant in the GLMM,
that is the distance from the nearest woodland (DISTF ). This result has high-
lighted how the proximity to forests may be a disturbing element for collection
of mosquitoes by means of CO2-baited traps. Furthermore, this discovery is an
example of how certain statistical models could limit the interaction between
variables with their predefined structure. The exploration of other types of re-
gression models, with not-only-linear terms, is obviously possible, but we based
our work on the state-of-art of the predictive models for the specific problem
addressed here.

The SIN variable seemed to be quite important in predicting the abundance
of Cx. pipiens in both methods. This artificial variable was the only one that
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Fig. 5. Predicted median abundance of mosquitoes for 2006 by the GP model (upper
figure) and the GLMM (lower figure) compared with median observed values (in green).
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allowed to model seasonal peaks and periods of total absence of mosquitoes. We
thought it would be interesting if this pattern could be learned by the model
directly from ecological variables, such as temperature and rainfall. However, to
recognize interesting patterns in these time series variables the algorithm needs
to receive them in their entire sequence and not splitted into different fitness
cases. This point made us think of a possible application of a vector approach of
GP [22] to predict mosquitoes abundance. Using this technique we would have
the opportunity to avoid artificial predictors and let GP use only environmental
variables to discover the model underlying data.

7 Conclusion

The goal of our work was to explore the possibility of using GP to tackle eco-
logical problems, possibly highlighting the advantages of this technique. In our
investigation, we used GP to create a predictive model for the abundance of
Cx. pipiens in the eastern area of Piedmont region, to detect suitable locations
for the entry of WNV. We evaluated GP performances using a statistical model
produced in a previous work [11] as threshold. GP was able to outperform the
statistical model in predicting the abundance on unseen data, while also finding
out interesting relationships among predictors.

In conclusion, GP has proven to be a powerful tool that opens up important
perspectives for the creation of forecasting models, particularly in the ecological
field. The ability of not requiring a prefixed model structure represent a huge
advantage over typical statistical models. In conjunction with the explorability
of the model, GP allows to automatically discover rather complex relationships
among variables, which is a really attractive feature in the ecological field. Future
development could be the application of a vector based GP, as some of the
predictors involve time series variables.
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