Skip to main content

A Knowledge Based Differential Evolution Algorithm for Protein Structure Prediction

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2019)

Abstract

Three-dimensional protein structure prediction is an open-challenging problem in Structural Bioinformatics and classified as an NP-complete problem in computational complexity theory. As exact algorithms cannot solve this type of problem, metaheuristics became useful strategies to find solutions in viable computational time. In this way, we analyze four standard mutation mechanisms present in Differential Evolution algorithms using the Angle Probability List as a source of information to predict tertiary protein structures, something not explored yet with Differential Evolution. As the balance between diversification and intensification is an essential fact during the optimization process, we also analyzed how the Angle Probability List might influence the algorithm behavior, something not investigated in other algorithms. Our tests reinforce that the use of structural data is a crucial factor to reach better results. Furthermore, combining experimental data in the optimization process can help the algorithm to avoid premature convergence, maintaining population diversity during the whole process and, consequently, reaching better conformational results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://sbcb.inf.ufrgs.br/nias.

  2. 2.

    https://www.rosettacommons.org.

References

  1. Walsh, G.: Proteins: Biochemistry and Biotechnology. Wiley, Hoboken (2014)

    Google Scholar 

  2. Corrêa, L.d.L, Borguesan, B., Krause, M.J., Dorn, M.: Three-dimensional protein structure prediction based on memetic algorithms. Comput. Oper. Res. 91, 160–177 (2018)

    Google Scholar 

  3. Guyeux, C., Côté, N.M.L., Bahi, J.M., Bienie, W.: Is protein folding problem really a NP-complete one? First investigations. J. Bioinf. Comput. Biol. 12, 1350017-1–1350017-24 (2014)

    Article  Google Scholar 

  4. Dorn, M., E Silva, M.B., Buriol, L.S., Lamb, L.C.: Three-dimensional protein structure prediction: methods and computational strategies. Comput. Biol. Chem. 53, 251–276 (2014)

    Article  Google Scholar 

  5. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution-an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

    Article  Google Scholar 

  6. Narloch, P.H., Parpinelli, R.S.: Diversification strategies in differential evolution algorithm to solve the protein structure prediction problem. In: Madureira, A.M., Abraham, A., Gamboa, D., Novais, P. (eds.) ISDA 2016. AISC, vol. 557, pp. 125–134. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53480-0_13

    Chapter  Google Scholar 

  7. Oliveira, M., Borguesan, B., Dorn, M.: SADE-SPL: a self-adapting differential evolution algorithm with a loop structure pattern library for the PSP problem. In: IEEE Congress on Evolutionary Computation, pp. 1095–1102 (2017)

    Google Scholar 

  8. Borguesan, B., E Silva, M.B., Grisci, B., Inostroza-Ponta, M., Dorn, M.: APL: an angle probability list to improve knowledge-based metaheuristics for the three-dimensional protein structure prediction. Comput. Biol. Chem. 59, 142–157 (2015)

    Article  Google Scholar 

  9. Corriveau, G., Guilbault, R., Tahan, A., Sabourin, R.: Review of phenotypic diversity formulations for diagnostic tool. Appl. Soft Comput. J. 13, 9–26 (2013)

    Article  Google Scholar 

  10. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181, 223–230 (1973)

    Article  Google Scholar 

  11. Rohl, C.A., Strauss, C.E., Misura, K.M., Baker, D.: Protein structure prediction using Rosetta. Methods Enzymol. 383, 66–93 (2004)

    Article  Google Scholar 

  12. Tai, C.H., Bai, H., Taylor, T.J., Lee, B.: Assessment of template-free modeling in CASP10 and ROLL. Proteins Struct. Funct. Bioinf. 82, 57–83 (2014)

    Article  Google Scholar 

  13. Ligabue-Braun, R., Borguesan, B., Verli, H., Krause, M.J., Dorn, M.: Everyone is a protagonist: residue conformational preferences in high-resolution protein structures. J. Comput. Biol 25, 451–465 (2017)

    Article  Google Scholar 

  14. Berman, H.M., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  15. Borguesan, B., Inostroza-Ponta, M., Dorn, M.: NIAS-Server: neighbors influence of amino acids and secondary structures in proteins. J. Comput. Biol. 24, 255–265 (2017)

    Article  Google Scholar 

  16. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  17. Du, K.-L., Swamy, M.N.S.: Search and Optimization by Metaheuristics. Techniques and Algorithms Inspired by Nature. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41192-7

    Book  MATH  Google Scholar 

  18. Narloch, P., Parpinelli, R.: The protein structure prediction problem approached by a cascade differential evolution algorithm using ROSETTA. In: Proceedings-2017 Brazilian Conference on Intelligent Systems, BRACIS 2017 (2018)

    Google Scholar 

  19. Venske, S.M., Gonçalves, R.A., Benelli, E.M., Delgado, M.R.: ADEMO/D: an adaptive differential evolution for protein structure prediction problem. Expert Syst. Appl. 56, 209–226 (2016)

    Article  Google Scholar 

  20. Dorn, M., Inostroza-Ponta, M., Buriol, L.S., Verli, H.: A knowledge-based genetic algorithm to predict three-dimensional structures of polypeptides. In: IEEE Congress on Evolutionary Computation, pp. 1233–1240 (2013)

    Google Scholar 

  21. Chaudhury, S., Lyskov, S., Gray, J.J.: PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010)

    Article  Google Scholar 

  22. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from FAPERGS [16/2551-0000520-6],MCT/CNPq [311022/2015-4; 311611/2018-4], CAPES-STIC AMSUD [88887.135130/2017-01] - Brazil, Alexander von Humboldt-Stiftung (AvH) [BRA 1190826 HFST CAPES-P] - Germany. This study was financed in part by the Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio Dorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Narloch, P.H., Dorn, M. (2019). A Knowledge Based Differential Evolution Algorithm for Protein Structure Prediction. In: Kaufmann, P., Castillo, P. (eds) Applications of Evolutionary Computation. EvoApplications 2019. Lecture Notes in Computer Science(), vol 11454. Springer, Cham. https://doi.org/10.1007/978-3-030-16692-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16692-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16691-5

  • Online ISBN: 978-3-030-16692-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics