Abstract
Processor-based digital systems are increasingly being used in safety-critical environments. To meet the associated safety requirements, these systems are usually characterized by a certain degree of redundancy. This paper proposes a concept to introduce a redundant processor on demand by using the partial reconfiguration capability of modern FPGAs. We describe a possible implementation of this concept and evaluate it experimentally. The evaluation focuses on the fault handling latency and the resource utilization of the design. It shows that an implementation with 32 KiB of local processor memory handles faults within 0.82 ms and, when no fault is present, consumes less than 46% of the resources that a comparable static design occupies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33 (2004). https://doi.org/10.1109/TDSC.2004.2
Bak, S., Chivukula, D.K., Adekunle, O., Sun, M., Caccamo, M., Sha, L.: The system-level simplex architecture for improved real-time embedded system safety. In: 2009 15th IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 99–107, April 2009. https://doi.org/10.1109/RTAS.2009.20
Baleani, M., Ferrari, A., Mangeruca, L., Sangiovanni-Vincentelli, A., Peri, M., Pezzini, S.: Fault-tolerant platforms for automotive safety-critical applications. In: Proceedings of the 2003 International Conference on Compilers, Architecture and Synthesis for Embedded Systems, CASES 2003, pp. 170–177. ACM, New York (2003). https://doi.org/10.1145/951710.951734
Bapp, F.K., Dörr, T., Sandmann, T., Schade, F., Becker, J.: Towards fail-operational systems on controller level using heterogeneous multicore SoC architectures and hardware support. In: WCX World Congress Experience. SAE International, April 2018. https://doi.org/10.4271/2018-01-1072
Bolchini, C., Miele, A., Santambrogio, M.D.: TMR and partial dynamic reconfiguration to mitigate SEU faults in FPGAs. In: 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007), pp. 87–95, September 2007. https://doi.org/10.1109/DFT.2007.25
Cheatham, J.A., Emmert, J.M., Baumgart, S.: A survey of fault tolerant methodologies for FPGAs. ACM Trans. Des. Autom. Electron. Syst. 11(2), 501–533 (2006). https://doi.org/10.1145/1142155.1142167
Di Carlo, S., Prinetto, S., Trotta, P., Andersson, P.: A portable open-source controller for safe dynamic partial reconfiguration on Xilinx FPGAs. In: 2015 25th International Conference on Field Programmable Logic and Applications (FPL), pp. 1–4, September 2015. https://doi.org/10.1109/FPL.2015.7294002
Ellis, S.M.: Dynamic software reconfiguration for fault-tolerant real-time avionic systems. Microprocess. Microsyst. 21(1), 29–39 (1997)
Emmert, J., Stroud, C., Skaggs, B., Abramovici, M.: Dynamic fault tolerance in FPGAs via partial reconfiguration. In: Proceedings 2000 IEEE Symposium on Field-Programmable Custom Computing Machines (Cat. No.PR00871), pp. 165–174, April 2000. https://doi.org/10.1109/FPGA.2000.903403
Isermann, R., Schwarz, R., Stölzl, S.: Fault-tolerant drive-by-wire systems. IEEE Control Syst. 22(5), 64–81 (2002)
Kohn, A., Käßmeyer, M., Schneider, R., Roger, A., Stellwag, C., Herkersdorf, A.: Fail-operational in safety-related automotive multi-core systems. In: 10th IEEE International Symposium on Industrial Embedded Systems (SIES), pp. 1–4, June 2015. https://doi.org/10.1109/SIES.2015.7185051
Nelson, V.P.: Fault-tolerant computing: fundamental concepts. Computer 23(7), 19–25 (1990). https://doi.org/10.1109/2.56849
Papadimitriou, K., Dollas, A., Hauck, S.: Performance of partial reconfiguration in FPGA systems: a survey and a cost model. ACM Trans. Reconfigurable Technol. Syst. 4(4), 36:1–36:24 (2011). https://doi.org/10.1145/2068716.2068722
Pham, H.M., Pillement, S., Piestrak, S.J.: Low-overhead fault-tolerance technique for a dynamically reconfigurable softcore processor. IEEE Trans. Comput. 62(6), 1179–1192 (2013). https://doi.org/10.1109/TC.2012.55
Psarakis, M., Vavousis, A., Bolchini, C., Miele, A.: Design and implementation of a self-healing processor on SRAM-based FPGAs. In: 2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 165–170, October 2014. https://doi.org/10.1109/DFT.2014.6962076
Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001). https://doi.org/10.1109/MS.2001.936213
Shreejith, S., Vipin, K., Fahmy, S.A., Lukasiewycz, M.: An approach for redundancy in FlexRay networks using FPGA partial reconfiguration. In: 2013 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 721–724, March 2013. https://doi.org/10.7873/DATE.2013.155
Storey, N.R.: Safety-Critical Computer Systems. Addison-Wesley Longman Publishing Co., Inc., Boston (1996)
Vavousis, A., Apostolakis, A., Psarakis, M.: A fault tolerant approach for FPGA embedded processors based on runtime partial reconfiguration. J. Electron. Testing 29(6), 805–823 (2013). https://doi.org/10.1007/s10836-013-5420-x
Vipin, K., Fahmy, S.A.: FPGA dynamic and partial reconfiguration: a survey of architectures, methods, and applications. ACM Comput. Surv. 51(4), 72:1–72:39 (2018). https://doi.org/10.1145/3193827
Acknowledgements
This work was funded by the German Federal Ministry of Education and Research (BMBF) under grant number 01IS16025 (ARAMiS II). The responsibility for the content of this publication rests with the authors.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Dörr, T., Sandmann, T., Schade, F., Bapp, F.K., Becker, J. (2019). Leveraging the Partial Reconfiguration Capability of FPGAs for Processor-Based Fail-Operational Systems. In: Hochberger, C., Nelson, B., Koch, A., Woods, R., Diniz, P. (eds) Applied Reconfigurable Computing. ARC 2019. Lecture Notes in Computer Science(), vol 11444. Springer, Cham. https://doi.org/10.1007/978-3-030-17227-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-17227-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17226-8
Online ISBN: 978-3-030-17227-5
eBook Packages: Computer ScienceComputer Science (R0)