Skip to main content

An Extension of the Fractional Gronwall Inequality

  • Conference paper
  • First Online:
Advances in Non-Integer Order Calculus and Its Applications (RRNR 2018)

Abstract

In this work, we prove a generalization of the Gronwall type inequality. This relation can be used in the qualitative analysis of the solutions to fractional differential equations with the \(\psi \)-fractional derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adda, F.B., Cresson, J.: Fractional differential equations and the Schrödinger equation. Appl. Math. Comput. 161, 323–345 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

    Article  MathSciNet  Google Scholar 

  3. Almeida, R., Malinowska, A.B., Monteiro, M.T.T.: Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Methods Appl. Sci. 41, 336–352 (2018)

    Article  MathSciNet  Google Scholar 

  4. Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 142 (2012). https://doi.org/10.1186/1687-1847-2012-142

    Article  MathSciNet  MATH  Google Scholar 

  5. Bagley, R.L., Torvik, J.: Fractional calculus - a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (1983)

    Article  Google Scholar 

  6. Bellman, R.: Stability Theory of Differential Equations. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  7. Djordjević, V.D., Jarić, J., Fabry, B., Fredberg, J.J., Stamenović, D.: Fractional derivatives embody essential features of cell rheological behavior. Ann. Biomed. Eng. 31, 692–699 (2003)

    Article  Google Scholar 

  8. Douglas, J.F.: Some applications of fractional calculus to polymer science. In: Prigogine, I., Rice, S.A. (eds.) Advances in Chemical Physics (2007)

    Chapter  Google Scholar 

  9. Grzesikiewicz, W., Wakulicz, A., Zbiciak, A.: Nonlinear problems of fractional calculus in modeling of mechanical systems. Int. J. Mech. Sci. 70, 89–90 (2013)

    Article  Google Scholar 

  10. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam (2006)

    Book  Google Scholar 

  11. Koh, C.G., Kelly, J.M.: Application of fractional derivatives to seismic analysis of base-isolated models. Earthq. Eng. Struct. Dyn. 19, 229–241 (1990)

    Article  Google Scholar 

  12. Luchko, Y., Trujillo, J.J.: Caputo-type modification of the ErdĂ©lyi-Kober fractional derivative. Fract. Calc. Appl. Anal. 10(3), 249–267 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Makris, N., Constantinou, M.C.: Fractional-derivative Maxwell model for viscous dampers. J. Struct. Eng. 117(9), 2708–2724 (1991)

    Article  Google Scholar 

  14. Qian, D., Gong, Z., Li, C.: A generalized Gronwall inequality and its application to fractional differential equations with Hadamard derivatives. In: Proceedings of the 3rd Conference on Nonlinear Science and Complexity, Cankaya University (2010)

    Google Scholar 

  15. Sousa, J.V.C., Oliveira, E.C.: A Gronwall inequality and the Cauchy-type problem by means of \(\psi \)-Hilfer operator. Differ. Equ. Appl. 11(1), 87–106 (2019)

    MathSciNet  Google Scholar 

  16. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328(2), 1075–1081 (2007)

    Article  MathSciNet  Google Scholar 

  17. Zhang, Z., Wei, Z.: A generalized Gronwall inequality and its application to fractional neutral evolution inclusions. J. Inequal. Appl. 2016, 45 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

R. Almeida is supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (FCT-Fundação para a CiĂȘncia e a Tecnologia), within project UID/MAT/04106/2019. A. B. Malinowska is supported by the Bialystok University of Technology grant S/WI/1/2016 and T. Odzijewicz by the Warsaw School of Economics grant KAE/S18/08/18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Odzijewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almeida, R., Malinowska, A.B., Odzijewicz, T. (2020). An Extension of the Fractional Gronwall Inequality. In: Malinowska, A., Mozyrska, D., Sajewski, Ɓ. (eds) Advances in Non-Integer Order Calculus and Its Applications. RRNR 2018. Lecture Notes in Electrical Engineering, vol 559. Springer, Cham. https://doi.org/10.1007/978-3-030-17344-9_2

Download citation

Publish with us

Policies and ethics