Skip to main content

Parameterized Complexity of Diameter

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11485))

Included in the following conference series:

Abstract

Diameter—the task of computing the length of a longest shortest path—is a fundamental graph problem. Assuming the Strong Exponential Time Hypothesis, there is no \(O(n^{1.99})\)-time algorithm even in sparse graphs [Roditty and Williams, 2013]. To circumvent this lower bound we aim for algorithms with running time \(f(k) (n+m)\) where k is a parameter and f is a function as small as possible. We investigate which parameters allow for such running times. To this end, we systematically explore a hierarchy of structural graph parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The h-index of a graph G is the largest number \(\ell \) such that G contains at least \(\ell \) vertices of degree at least \(\ell \).

  2. 2.

    Results marked with (\(\star \)) are deferred to a full version, available under https://arxiv.org/abs/1802.10048.

References

  1. Abboud, A., Williams, V.V., Wang, J.R.: Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pp. 377–391. SIAM (2016)

    Google Scholar 

  2. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999)

    Article  MathSciNet  Google Scholar 

  3. Backurs, A., Roditty, L., Segal, G., Williams, V.V., Wein, N.: Towards tight approximation bounds for graph diameter and eccentricities. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2018), pp. 267–280. ACM (2018)

    Google Scholar 

  4. Bentert, M., Fluschnik, T., Nichterlein, A., Niedermeier, R.: Parameterized aspects of triangle enumeration. In: Klasing, R., Zeitoun, M. (eds.) FCT 2017. LNCS, vol. 10472, pp. 96–110. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55751-8_9

    Chapter  MATH  Google Scholar 

  5. Borassi, M., Crescenzi, P., Habib, M., Kosters, W.A., Marino, A., Takes, F.W.: Fast diameter and radius BFS-based computation in (weakly connected) real-world graphs: with an application to the six degrees of separation games. Theor. Comput. Sci. 586, 59–80 (2015)

    Article  MathSciNet  Google Scholar 

  6. Borassi, M., Crescenzi, P., Trevisan, L.: An axiomatic and an average-case analysis of algorithms and heuristics for metric properties of graphs. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 920–939. SIAM (2017)

    Google Scholar 

  7. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, SIAM Monographs on Discrete Mathematics and Applications, vol. 3. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  8. Bretscher, A., Corneil, D.G., Habib, M., Paul, C.: A simple linear time LexBFS cograph recognition algorithm. SIAM J. Discret. Math. 22(4), 1277–1296 (2008)

    Article  MathSciNet  Google Scholar 

  9. Bringmann, K., Husfeldt, T., Magnusson, M.: Multivariate analysis of orthogonal range searching and graph distances parameterized by treewidth. Computing Research Repository abs/1805.07135 (2018). Accepted at IPEC 2018

    Google Scholar 

  10. Cairo, M., Grossi, R., Rizzi, R.: New bounds for approximating external distances in undirected graphs. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pp. 363–376. SIAM (2016)

    Google Scholar 

  11. Chan, T.M., Williams, R.: Deterministic APSP, orthogonal vectors, and more: quickly derandomizing Razborov-Smolensky. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pp. 1246–1255. SIAM (2016)

    Google Scholar 

  12. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4), 926–934 (1985)

    Article  MathSciNet  Google Scholar 

  13. Coudert, D., Ducoffe, G., Popa, A.: Fully polynomial FPT algorithms for some classes of bounded clique-width graphs. In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018), pp. 2765–2784. SIAM (2018)

    Google Scholar 

  14. Evald, J., Dahlgaard, S.: Tight hardness results for distance and centrality problems in constant degree graphs. Computing Research Repository abs/1609.08403 (2016)

    Google Scholar 

  15. Fluschnik, T., Komusiewicz, C., Mertzios, G.B., Nichterlein, A., Niedermeier, R., Talmon, N.: When can graph hyperbolicity be computed in linear time? Algorithms and Data Structures. LNCS, vol. 10389, pp. 397–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2_34

    Chapter  Google Scholar 

  16. Fomin, F.V., Lokshtanov, D., Saurabh, S., Pilipczuk, M., Wrochna, M.: Fully polynomial-time parameterized computations for graphs and matrices of low treewidth. ACM Trans. Algorithms 14(3), 34:1–34:45 (2018)

    Article  MathSciNet  Google Scholar 

  17. Gawrychowski, P., Kaplan, H., Mozes, S., Sharir, M., Weimann, O.: Voronoi diagrams on planar graphs, and computing the diameter in deterministic Õ(n\({}^{\text{5/3}}\)) time. In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018), pp. 495–514. SIAM (2018)

    Google Scholar 

  18. Giannopoulou, A.C., Mertzios, G.B., Niedermeier, R.: Polynomial fixed-parameter algorithms: a case study for longest path on interval graphs. Theor. Comput. Sci. 689, 67–95 (2017)

    Article  MathSciNet  Google Scholar 

  19. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  20. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: distance from triviality. In: Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28639-4_15

    Chapter  Google Scholar 

  21. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  Google Scholar 

  22. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  Google Scholar 

  23. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM 24(1), 1–13 (1977)

    Article  MathSciNet  Google Scholar 

  24. Korenwein, V., Nichterlein, A., Niedermeier, R., Zschoche, P.: Data reduction for maximum matching on real-world graphs: theory and experiments. In: Proceedings of the 26th Annual European Symposium on Algorithms (ESA 2018). LIPIcs, vol. 112. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  25. Kratsch, S., Nelles, F.: Efficient and adaptive parameterized algorithms on modular decompositions. In: Proceedings of the 26th Annual European Symposium on Algorithms (ESA 2018). LIPIcs, vol. 112, pp. 55:1–55:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  26. Leskovec, J., Horvitz, E.: Planetary-scale views on a large instant-messaging network. In: Proceedings of the 17th International World Wide Web Conference (WWW 2008), pp. 915–924. ACM (2008). ISBN 978-1-60558-085-2

    Google Scholar 

  27. Mertzios, G.B., Nichterlein, A., Niedermeier, R.: The power of linear-time data reduction for maximum matching. In: Proceedings of the 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). LIPIcs, vol. 83, pp. 46:1–46:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  28. Milgram, S.: The small world problem. Psychol. Today 1, 61–67 (1967)

    Google Scholar 

  29. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  30. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  31. Newman, M.E.J., Park, J.: Why social networks are different from other types of networks. Phys. Rev. E 68(3), 036122 (2003)

    Article  Google Scholar 

  32. Roditty, L., Williams, V.V.: Fast approximation algorithms for the diameter and radius of sparse graphs. In: Proceedings of the 45th Symposium on Theory of Computing Conference (STOC 2013), pp. 515–524. ACM (2013)

    Google Scholar 

  33. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput. Syst. Sci. 51(3), 400–403 (1995)

    Article  MathSciNet  Google Scholar 

  34. Sorge, M., Weller, M.: The graph parameter hierarchy (2013, manuscript)

    Google Scholar 

  35. Weimann, O., Yuster, R.: Approximating the diameter of planar graphs in near linear time. ACM Trans. Algorithms 12(1), 12:1–12:13 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Bentert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bentert, M., Nichterlein, A. (2019). Parameterized Complexity of Diameter. In: Heggernes, P. (eds) Algorithms and Complexity. CIAC 2019. Lecture Notes in Computer Science(), vol 11485. Springer, Cham. https://doi.org/10.1007/978-3-030-17402-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17402-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17401-9

  • Online ISBN: 978-3-030-17402-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics