Abstract
Diameter—the task of computing the length of a longest shortest path—is a fundamental graph problem. Assuming the Strong Exponential Time Hypothesis, there is no \(O(n^{1.99})\)-time algorithm even in sparse graphs [Roditty and Williams, 2013]. To circumvent this lower bound we aim for algorithms with running time \(f(k) (n+m)\) where k is a parameter and f is a function as small as possible. We investigate which parameters allow for such running times. To this end, we systematically explore a hierarchy of structural graph parameters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The h-index of a graph G is the largest number \(\ell \) such that G contains at least \(\ell \) vertices of degree at least \(\ell \).
- 2.
Results marked with (\(\star \)) are deferred to a full version, available under https://arxiv.org/abs/1802.10048.
References
Abboud, A., Williams, V.V., Wang, J.R.: Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pp. 377–391. SIAM (2016)
Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999)
Backurs, A., Roditty, L., Segal, G., Williams, V.V., Wein, N.: Towards tight approximation bounds for graph diameter and eccentricities. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2018), pp. 267–280. ACM (2018)
Bentert, M., Fluschnik, T., Nichterlein, A., Niedermeier, R.: Parameterized aspects of triangle enumeration. In: Klasing, R., Zeitoun, M. (eds.) FCT 2017. LNCS, vol. 10472, pp. 96–110. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55751-8_9
Borassi, M., Crescenzi, P., Habib, M., Kosters, W.A., Marino, A., Takes, F.W.: Fast diameter and radius BFS-based computation in (weakly connected) real-world graphs: with an application to the six degrees of separation games. Theor. Comput. Sci. 586, 59–80 (2015)
Borassi, M., Crescenzi, P., Trevisan, L.: An axiomatic and an average-case analysis of algorithms and heuristics for metric properties of graphs. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 920–939. SIAM (2017)
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, SIAM Monographs on Discrete Mathematics and Applications, vol. 3. SIAM, Philadelphia (1999)
Bretscher, A., Corneil, D.G., Habib, M., Paul, C.: A simple linear time LexBFS cograph recognition algorithm. SIAM J. Discret. Math. 22(4), 1277–1296 (2008)
Bringmann, K., Husfeldt, T., Magnusson, M.: Multivariate analysis of orthogonal range searching and graph distances parameterized by treewidth. Computing Research Repository abs/1805.07135 (2018). Accepted at IPEC 2018
Cairo, M., Grossi, R., Rizzi, R.: New bounds for approximating external distances in undirected graphs. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pp. 363–376. SIAM (2016)
Chan, T.M., Williams, R.: Deterministic APSP, orthogonal vectors, and more: quickly derandomizing Razborov-Smolensky. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pp. 1246–1255. SIAM (2016)
Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4), 926–934 (1985)
Coudert, D., Ducoffe, G., Popa, A.: Fully polynomial FPT algorithms for some classes of bounded clique-width graphs. In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018), pp. 2765–2784. SIAM (2018)
Evald, J., Dahlgaard, S.: Tight hardness results for distance and centrality problems in constant degree graphs. Computing Research Repository abs/1609.08403 (2016)
Fluschnik, T., Komusiewicz, C., Mertzios, G.B., Nichterlein, A., Niedermeier, R., Talmon, N.: When can graph hyperbolicity be computed in linear time? Algorithms and Data Structures. LNCS, vol. 10389, pp. 397–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2_34
Fomin, F.V., Lokshtanov, D., Saurabh, S., Pilipczuk, M., Wrochna, M.: Fully polynomial-time parameterized computations for graphs and matrices of low treewidth. ACM Trans. Algorithms 14(3), 34:1–34:45 (2018)
Gawrychowski, P., Kaplan, H., Mozes, S., Sharir, M., Weimann, O.: Voronoi diagrams on planar graphs, and computing the diameter in deterministic Õ(n\({}^{\text{5/3}}\)) time. In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018), pp. 495–514. SIAM (2018)
Giannopoulou, A.C., Mertzios, G.B., Niedermeier, R.: Polynomial fixed-parameter algorithms: a case study for longest path on interval graphs. Theor. Comput. Sci. 689, 67–95 (2017)
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)
Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: distance from triviality. In: Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28639-4_15
Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)
Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)
Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM 24(1), 1–13 (1977)
Korenwein, V., Nichterlein, A., Niedermeier, R., Zschoche, P.: Data reduction for maximum matching on real-world graphs: theory and experiments. In: Proceedings of the 26th Annual European Symposium on Algorithms (ESA 2018). LIPIcs, vol. 112. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)
Kratsch, S., Nelles, F.: Efficient and adaptive parameterized algorithms on modular decompositions. In: Proceedings of the 26th Annual European Symposium on Algorithms (ESA 2018). LIPIcs, vol. 112, pp. 55:1–55:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)
Leskovec, J., Horvitz, E.: Planetary-scale views on a large instant-messaging network. In: Proceedings of the 17th International World Wide Web Conference (WWW 2008), pp. 915–924. ACM (2008). ISBN 978-1-60558-085-2
Mertzios, G.B., Nichterlein, A., Niedermeier, R.: The power of linear-time data reduction for maximum matching. In: Proceedings of the 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). LIPIcs, vol. 83, pp. 46:1–46:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)
Milgram, S.: The small world problem. Psychol. Today 1, 61–67 (1967)
Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)
Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)
Newman, M.E.J., Park, J.: Why social networks are different from other types of networks. Phys. Rev. E 68(3), 036122 (2003)
Roditty, L., Williams, V.V.: Fast approximation algorithms for the diameter and radius of sparse graphs. In: Proceedings of the 45th Symposium on Theory of Computing Conference (STOC 2013), pp. 515–524. ACM (2013)
Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput. Syst. Sci. 51(3), 400–403 (1995)
Sorge, M., Weller, M.: The graph parameter hierarchy (2013, manuscript)
Weimann, O., Yuster, R.: Approximating the diameter of planar graphs in near linear time. ACM Trans. Algorithms 12(1), 12:1–12:13 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bentert, M., Nichterlein, A. (2019). Parameterized Complexity of Diameter. In: Heggernes, P. (eds) Algorithms and Complexity. CIAC 2019. Lecture Notes in Computer Science(), vol 11485. Springer, Cham. https://doi.org/10.1007/978-3-030-17402-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-17402-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17401-9
Online ISBN: 978-3-030-17402-6
eBook Packages: Computer ScienceComputer Science (R0)