Skip to main content

Compact Adaptively Secure ABE for \(\mathsf {NC^1}\) from k-Lin

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2019 (EUROCRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11476))

Abstract

We present compact attribute-based encryption (ABE) schemes for \(\mathsf {NC^1}\) that are adaptively secure under the k-Lin assumption with polynomial security loss. Our KP-ABE scheme achieves ciphertext size that is linear in the attribute length and independent of the policy size even in the many-use setting, and we achieve an analogous efficiency guarantee for CP-ABE. This resolves the central open problem posed by Lewko and Waters (CRYPTO 2011). Previous adaptively secure constructions either impose an attribute “one-use restriction” (or the ciphertext size grows with the policy size), or require q-type assumptions.

L. Kowalczyk—Supported in part by an NSF Graduate Research Fellowship DGE-16-44869; The Leona M. & Harry B. Helmsley Charitable Trust; ERC Project aSCEND (H2020 639554); the Defense Advanced Research Project Agency (DARPA) and Army Research Office (ARO) under Contract W911NF-15-C-0236; and NSF grants CNS-1445424, CNS-1552932 and CCF-1423306. Any opinions, findings and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the Defense Advanced Research Projects Agency, Army Research Office, the National Science Foundation, or the U.S. Government.

H. Wee—Supported in part by ERC Project aSCEND (H2020 639554).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that there exist constructions of ABE for more general access policies like monotone span programs/Boolean formulas with threshold gates [17], and even polynomial-sized Boolean circuits [14, 16], but all such constructions sacrifice at least one of the properties (1)–(3).

  2. 2.

    Essentially, the dual system proof method provides guidance for transforming suitably-designed functional encryption schemes which are secure for one adversarial secret key request to the multi-key setting where multiple keys may be requested by the adversary. Our main technical contribution involves the analysis of the initial single-key-secure component, which we refer to later as our “Core 1-ABE” component.

  3. 3.

    Most directly by pushing all NOT gates to the input nodes of each circuit and using new attributes to represent the negation of each original attribute. It is likely that the efficiency hit introduced by this transformation can be removed through more advanced techniques à la [24, 29], but we leave this for future work.

  4. 4.

    Some works associate ciphertexts with a set \(S \subseteq [n]\) where [n] is referred to as the attribute universe, in which case \(\mathbf {x}\in \{0,1\}^n\) corresponds to the characteristic vector of S.

  5. 5.

    E.g.: \(k=1\) corresponds to security under the Symmetric External Diffie-Hellman Assumption (SXDH), and \(k=2\) corresponds to security under the Decisional Linear Assumption (DLIN).

  6. 6.

    Informally, \(\{\mathsf {H}^u\}\) describes the simulated games used in the security reduction, where the reduction guesses \(R'\) bits of information described by u about some choices z made by the adversary; these \(R'\) bits of information are described by \(h_\ell (z)\) in the \(\ell \)’th hybrid. In the \(\ell \)’th hybrid, the reduction guesses a \(u \in \{0,1\}^{R'}\) and simulates the game according to \(\mathsf {H}^u\) and hopes that the adversary will pick an z such that \(h_\ell (z) = u\); note that the adversary is not required to pick such an z. One way to think of \(\mathsf {H}^u\) is that the reduction is committed to u, but the adversary can do whatever it wants.

References

  1. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate encryption schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_22

    Chapter  Google Scholar 

  2. Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_31

    Chapter  Google Scholar 

  3. Attrapadung, N.: Dual system encryption framework in prime-order groups via computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_20

    Chapter  MATH  Google Scholar 

  4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer Society Press, May 2007

    Google Scholar 

  5. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_23

    Chapter  Google Scholar 

  6. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_20

    Chapter  Google Scholar 

  7. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_19

    Chapter  Google Scholar 

  8. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_25

    Chapter  Google Scholar 

  9. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delegation for Boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 277–297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_16

    Chapter  Google Scholar 

  10. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_1

    Chapter  Google Scholar 

  11. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8

    Chapter  Google Scholar 

  12. Fuchsbauer, G., Jafargholi, Z., Pietrzak, K.: A Quasipolynomial Reduction for Generalized Selective Decryption on Trees. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 601–620. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_29

    Chapter  Google Scholar 

  13. Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 82–101. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_5

    Chapter  Google Scholar 

  14. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_27

    Chapter  Google Scholar 

  15. Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduction to standard assumption in the multi-challenge setting. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 624–654. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_21

    Chapter  Google Scholar 

  16. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 545–554. ACM Press, New York (2013)

    Google Scholar 

  17. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, New York (2006). Available as Cryptology ePrint Archive Report 2006/309

    Google Scholar 

  18. Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively secure garbled circuits from one-way functions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 149–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_6

    Chapter  Google Scholar 

  19. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9_22

    Chapter  Google Scholar 

  20. Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs, D.: Be Adaptive, Avoid Overcommitting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 133–163. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_5

    Chapter  Google Scholar 

  21. Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 433–458. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_17

    Chapter  MATH  Google Scholar 

  22. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k-Lin. IACR Cryptology ePrint Archive, 2019:224 (2019)

    Google Scholar 

  23. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4

    Chapter  Google Scholar 

  24. Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small private keys. In: IEEE Symposium on Security and Privacy, pp. 273–285. IEEE Computer Society Press, May 2010

    Google Scholar 

  25. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_27

    Chapter  Google Scholar 

  26. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_12

    Chapter  Google Scholar 

  27. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_11

    Chapter  Google Scholar 

  28. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_22

    Chapter  Google Scholar 

  29. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM CCS 2007, pp. 195–203. ACM Press, New York (2007)

    Google Scholar 

  30. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_24

    Chapter  Google Scholar 

  31. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  32. Vinod, V., Narayanan, A., Srinathan, K., Rangan, C.P., Kim, K.: On the power of computational secret sharing. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 162–176. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24582-7_12

    Chapter  Google Scholar 

  33. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36

    Chapter  Google Scholar 

  34. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_26

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Allison Bishop, Sanjam Garg, Rocco Servedio, and Daniel Wichs for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Kowalczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kowalczyk, L., Wee, H. (2019). Compact Adaptively Secure ABE for \(\mathsf {NC^1}\) from k-Lin. In: Ishai, Y., Rijmen, V. (eds) Advances in Cryptology – EUROCRYPT 2019. EUROCRYPT 2019. Lecture Notes in Computer Science(), vol 11476. Springer, Cham. https://doi.org/10.1007/978-3-030-17653-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17653-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17652-5

  • Online ISBN: 978-3-030-17653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics