Skip to main content

Deep Learning for Detection of Railway Signs and Signals

  • Conference paper
  • First Online:
Advances in Computer Vision (CVC 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 943))

Included in the following conference series:

Abstract

Major railway lines need advance management systems based on accurate maps of their infrastructure. Asset detection is an important tool towards automation of processes and improved decision support on such systems. Due to lack of available data, limited research exists investigating railway asset detection, despite the rise of Artificial Neural Networks and the numerous investigations on autonomous driving. Here, we present a novel dataset used in real world projects for mapping railway assets. Also, we implement Faster R-CNN, a state of the art deep learning object detection method, for detection of signs and signals on this dataset. We achieved 79.36% on detection and a 70.9% mAP. The results were compromised by the small size of the objects, the low resolution of the images and the high similarity across classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Second Affiliation.

  2. 2.

    Second Affiliation.

References

  1. Agudo, D., Sánchez, Á., Vélez, J.F., Moreno, A.B.: Real-time railway speed limit sign recognition from video sequences. In: 2016 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 1–4, May 2016

    Google Scholar 

  2. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 2015, pp. 91–99 (2015)

    Google Scholar 

  3. Zheng, D., Wang, Y.: Application of an artificial neural network on railway passenger flow prediction. In: Proceedings of 2011 International Conference on Electronic Mechanical Engineering and Information Technology, vol. 1, pp. 149–152, August 2011

    Google Scholar 

  4. Tsai, T.-H., Lee, C.-K., Wei, C.-H.: Neural network based temporal feature models for short-term railway passenger demand forecasting. Expert Syst. Appl. 36(2), 3728–3736 (2009). Part 2. http://www.sciencedirect.com/science/article/pii/S0957417408001516

    Article  Google Scholar 

  5. Karthick, N., Nagarajan, R., Suresh, S., Prabhu, R.: Implementation of railway track crack detection and protection. Int. J. Eng. Comput. Sci. 6(5), 21476–21481 (2017). http://ijecs.in/index.php/ijecs/article/view/3535

    Google Scholar 

  6. Sadeghi, J., Askarinejad, H.: Application of neural networks in evaluation of railway track quality condition. J. Mech. Sci. Technol. 26(1), 113–122 (2012). https://doi.org/10.1007/s12206-011-1016-5

    Article  Google Scholar 

  7. Gibert, X., Patel, V.M., Chellappa, R.: Robust fastener detection for autonomous visual railway track inspection. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 694–701, January 2015

    Google Scholar 

  8. Sinha, D., Feroz, F.: Obstacle detection on railway tracks using vibration sensors and signal filtering using bayesian analysis. IEEE Sens. J. 16(3), 642–649 (2016)

    Article  Google Scholar 

  9. Faghih-Roohi, S., Hajizadeh, S., Núñez, A., Babuska, R., Schutter, B.D.: Deep convolutional neural networks for detection of rail surface defects. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2584–2589, July 2016

    Google Scholar 

  10. Marmo, R., Lombardi, L., Gagliardi, N.: Railway sign detection and classification. In: 2006 IEEE Intelligent Transportation Systems Conference, pp. 1358–1363, September 2006

    Google Scholar 

  11. Melander, M., Halme, I.: Computer vision based solution for sign detection. Eur. Railway Rev. (2016). https://www.globalrailwayreview.com/article/30202/computer-vision-based-solution-sign-detection/

  12. Arastounia, M.: Automated recognition of railroad infrastructure in rural areas from LIDAR data. Remote Sens. 11, 14916–14938 (2015)

    Article  Google Scholar 

  13. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587 (2014)

    Google Scholar 

  14. Girshick, R.: Fast R-CNN. In: Proceedings (IEEE International Conference on Computer Vision), vol. 2015, pp. 1440–1448 (2015)

    Google Scholar 

  15. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2016, pp. 779–788 (2016)

    Google Scholar 

  17. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: Single shot multibox detector. In: Lecture Notes in Computer Science, vol. 9905, pp. 21–37 (2016)

    Google Scholar 

  18. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Lecture Notes in Computer Science, vol. 8693, pp. 740–755 (2014)

    Google Scholar 

  19. Great Britain: Department for Transport. Traffic Signs Manual. The Stationary Office, London, United Kingdom (2013)

    Google Scholar 

  20. Safety, R., Board, S.: Lineside Operational Safety Signs. Railway Group Standard, London (2009)

    Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2016, pp. 770–778 (2016)

    Google Scholar 

  22. Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  23. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill Inc., New York (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Karagiannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karagiannis, G., Olsen, S., Pedersen, K. (2020). Deep Learning for Detection of Railway Signs and Signals. In: Arai, K., Kapoor, S. (eds) Advances in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing, vol 943. Springer, Cham. https://doi.org/10.1007/978-3-030-17795-9_1

Download citation

Publish with us

Policies and ethics