Skip to main content

License Plate Detection and Recognition: An Empirical Study

  • Conference paper
  • First Online:
Advances in Computer Vision (CVC 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 943))

Included in the following conference series:

Abstract

Vehicle License Plate Detection and Recognition has become critical to traffic, security and surveillance applications. This contribution aims to implement and evaluate different techniques for License Plate Detection and Recognition in order to improve their accuracy. This work addresses various problems in detection such as adverse weather, illumination change and poor quality of captured images. After detecting the license plate location in an image the next challenge is to recognize each letter and digit. In this work three different approaches have been investigated to find which one performs best. Here, characters are classified through template matching, multi-class SVM, and convolutional neural network. The performance was measured empirically, with 36 classes each containing 400 images per class used for training and testing. For each algorithm empirical accuracy was assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anagnostopoulos, C.N.E., Anagnostopoulos, I.E., Psoroulas, I.D., Loumos, V., Kayafas, E.: License plate recognition from still images and video sequences: a survey. Trans. Intell. Transp. Sys. 9(3), 377–391 (2008)

    Article  Google Scholar 

  2. Jia, W., Zhang, H., He, X.: Region-based license plate detection. J. Netw. Comput. Appl. 30(4), 1324–1333 (2007)

    Article  Google Scholar 

  3. Roberts, L.G.: Machine perception of three-dimensional solids. Ph.D. thesis, Massachusetts Institute of Technology. Department of Electrical Engineering (1963)

    Google Scholar 

  4. Sandler, R., Vichik, S., Rosen, A.: License plate recognition - final report

    Google Scholar 

  5. Sandler, R., Vichik, S., Rosen, A.: Moving car license plate recognition - semesterial project, final report

    Google Scholar 

  6. Saha, S., Basu, S., Nasipuri, M.: License plate localization using vertical edge map and hough transform based technique, pp. 649–656. Springer, Heidelberg (2012)

    Google Scholar 

  7. Hongliang, B., Changping, L.: A hybrid license plate extraction method based on edge statistics and morphology, vol. 2, pp. 831–834 (2004)

    Google Scholar 

  8. Bai, H., Zhu, J., Liu, C.: A fast license plate extraction method on complex background. In: 2003 IEEE Intelligent Transportation Systems, Proceedings, vol. 2, pp. 985–987. IEEE (2003)

    Google Scholar 

  9. Wei, W., Wang, M., Huang, Z.: An automatic method of location for number-plate using color features. In: 2001 International Conference on Image Processing, Proceedings, vol. 1, pp. 782–785. IEEE (2001)

    Google Scholar 

  10. Kim, K.I., Jung, K., Kim, J.H.: Color texture-based object detection: an application to license plate localization. In: Pattern Recognition with Support Vector Machines, pp. 293–309. Springer (2002)

    Google Scholar 

  11. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)

  12. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  13. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  14. Lauer, F., Suen, C.Y., Bloch, G.: A trainable feature extractor for handwritten digit recognition. Pattern Recognit. 40(6), 1816–1824 (2007). 19 pp

    Article  Google Scholar 

  15. Kim, K.I., Kim, K.K., Park, S.H., Jung, K., Park, M.H., Kim, H.J.: Vega Vision: a vision system for recognizing license plates (1999)

    Google Scholar 

  16. Ribaric, S., Adrinek, G., Segvic, S.: Real-time active visual tracking system, vol. 1, pp. 231–234, May 2004

    Google Scholar 

  17. Brunelli, R.: Template Matching Techniques in Computer Vision: Theory and Practice. Wiley, Hoboken (2009)

    Book  Google Scholar 

  18. De Campos, T.E., Babu, B.R., Varma, M.: Character recognition in natural images. In: proceedings of the International Conference on Computer Vision Theory and Applications, Liston, Portugal, February 2009

    Google Scholar 

  19. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  20. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  21. Goodfellow, I.J., Bulatov, Y., Ibarz, J., Arnoud, S., Shet, V.: Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv preprint arXiv:1312.6082 (2013)

  22. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. J. Rahman , S. S. Beauchemin or M. A. Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahman, M.J., Beauchemin, S.S., Bauer, M.A. (2020). License Plate Detection and Recognition: An Empirical Study. In: Arai, K., Kapoor, S. (eds) Advances in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing, vol 943. Springer, Cham. https://doi.org/10.1007/978-3-030-17795-9_24

Download citation

Publish with us

Policies and ethics