Skip to main content

DynFace: A Multi-label, Dynamic-Margin-Softmax Face Recognition Model

  • Conference paper
  • First Online:
Advances in Computer Vision (CVC 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 943))

Included in the following conference series:

Abstract

Convolutional neural networks (CNN), more recently, have greatly increased the performance of face recognition due to its high capability in learning discriminative features. Many of the initial face recognition algorithms reported high performance in the small size Labeled Faces in the Wild (LFW) dataset but fail to deliver same results on larger or different datasets. Ongoing research tries to boost the performance of Face Recognition methods by modifying either the neural network structure or the loss function. This paper proposes two novel additions to the typical softmax CNN used for face recognition: a fusion of facial attributes at feature level and a dynamic margin softmax loss. The new network DynFace was extensively evaluated on extended LFW and much larger MegaFace, comparing its performance against known algorithms. The DynFace achieved state-of-art accuracy at high speed. Results obtained during the carefully designed test experiments, are presented in the end of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: CVPR, pp. 1701–1708 (2014)

    Google Scholar 

  2. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR, pp. 815–823 (2015)

    Google Scholar 

  3. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report, pp. 7–49 (2007)

    Google Scholar 

  4. Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The MegaFace benchmark: 1 million faces for recognition at scale. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4873–4882 (2016)

    Google Scholar 

  5. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. arXiv:1710.08092 (2017)

  6. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)

  7. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: European Conference on Computer Vision, pp. 87–102. Springer (2016)

    Google Scholar 

  8. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Web-scale training for face identification. In: CVPR, pp. 2746–2754 (2015)

    Google Scholar 

  9. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: CVPR (2017)

    Google Scholar 

  10. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the PnP problem. Int. J. Comput. Vis. 81(2), 155–166 (2009)

    Article  Google Scholar 

  11. Wang, F., Liu, W., Liu, H., Cheng, J.: Additive margin softmax for face verification. arXiv:1801.05599 (2018)

    Article  Google Scholar 

  12. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  13. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Liu, W., Wen, Y., Yu, Z.: Large-margin softmax loss for convolutional neural networks. In: ICML (2016)

    Google Scholar 

  16. Rudd, E.M., Gunther, M., Boult, T.E.: MOON: a mixed objective optimization network for the recognition of facial attributes. In: ECCV (2016)

    Google Scholar 

  17. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems, pp. 1988–1996 (2014)

    Google Scholar 

  18. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: European Conference on Computer Vision, pp. 499–515. Springer (2016)

    Google Scholar 

  19. Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., Liu, W.: CosFace: large margin cosine loss for deep face recognition. Tencent AI Lab (2017)

    Google Scholar 

  20. Deng, J., Guo, J., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: arXiv:1801.07698 (2018)

  21. Wang, Z., He, K., Fu, Y., Feng, R., Jiang, Y.-G., Xue, X.: Multi-task deep neural network for joint face recognition and facial attribute prediction. In: Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, pp. 365–374. ACM (2017)

    Google Scholar 

  22. Ranjan, R., Sankaranarayanan, S., Castillo, C.D., Chellappa, R.: An all-in-one convolutional neural network for face analysis. In: Proceedings of the 12th International Conference on Automatic Face & Gesture Recognition (FG), Washington, DC, USA, pp. 17–24 (2017)

    Google Scholar 

  23. Ng, H.-W., Winkler, S.: A data-driven approach to cleaning large face datasets. In: IEEE International Conference on Image Processing (ICIP), pp. 343–347 (2014)

    Google Scholar 

  24. Fu, Y., Hospedales, T.M., Xiang, T., Gong, S., Yao, Y.: Interestingness prediction by robust learning to rank. In: European Conference on Computer Vision, pp. 488–503. Springer (2014)

    Google Scholar 

  25. Klontz, J., Klare, B., Klum, S., Burge, M., Jain, A.: Open source biometric recognition. Biometrics: Theory Appl. Syst. (2013)

    Google Scholar 

  26. https://github.com/happynear/AMSoftmax

  27. http://www.robots.ox.ac.uk/~vgg/data/vgg_face2

  28. https://github.com/wy1iu/sphereface

  29. Biemann, C.: Chinese whispers: an efficient graph clustering algorithm and its application to natural language processing problems. In: Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing, pp. 73–80 (2006)

    Google Scholar 

  30. King, D.E.: DLib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Cordea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cordea, M., Ionescu, B., Gadea, C., Ionescu, D. (2020). DynFace: A Multi-label, Dynamic-Margin-Softmax Face Recognition Model. In: Arai, K., Kapoor, S. (eds) Advances in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing, vol 943. Springer, Cham. https://doi.org/10.1007/978-3-030-17795-9_39

Download citation

Publish with us

Policies and ethics