Skip to main content

A Mini-review of Biomedical Infrared Thermography (B-IRT)

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2019)

Abstract

Infrared thermography (IRT) is a non-destructive imaging technique that is used for revealing temperature differences on the surfaces of the human body or objects. Once it is used for biomedical purpose, it measures the emitted radiation on the surfaces of the human body. We, in this research, present Biomedical Infrared Thermography (B-IRT) applications with various measurement methods, analysis types, analysis schemes and study types from the existing literature in a detailed literature matrix. A mini-review of 30 studies from the literature are summarized through focusing on substantial features and backgrounds. Finally, recent advances and future opportunities are also presented to highlight high potential use of IRT in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mollmann, K.P., Vollmer, M.: Infrared Thermal Imaging. WILEY-VCH, New York (2010)

    Google Scholar 

  2. Kirimtat, A., Krejcar, O.: A review of infrared thermography for the investigation of building envelopes: advances and prospects. Energy Build. 176, 390–406 (2018)

    Article  Google Scholar 

  3. Ring, E.F., Ammer, K.: Infrared thermal imaging in medicine. Physiol. Measur. 33(3), 33–46 (2012)

    Article  Google Scholar 

  4. Jiang, L.J., Ng, E.Y., Yeo, A.C., et al.: A perspective on medical infrared imaging. J. Med. Eng. Technol. 29(6), 257–267 (2005)

    Article  Google Scholar 

  5. Kylili, A., Fokaides, P.A., Christou, P., Kalogirou, S.A.: Infrared thermography (IRT) applications for building diagnostics: a review. Appl. Energy 134, 531–549 (2014)

    Article  Google Scholar 

  6. FLIR Systems: ThermaCAM B2: Operator’s Manual. Flir Systems, Sweden (2005)

    Google Scholar 

  7. Gade, R., Moeslund, T.B.: Thermal cameras and applications: a survey. Mach. Vis. Appl. 25, 245–262 (2014)

    Article  Google Scholar 

  8. Astarita, T., Cardone, G., Carlomagno, G.M., Meola, C.: A survey on infrared thermography for convective heat transfer measurements. Opt. Laser Technol. 32, 593–610 (2000)

    Article  Google Scholar 

  9. Buzug, T.M., Schumann, S., Pfaffmann, L., Reinhold, U., Ruhlmann, J.: Functional infrared imaging for skin-cancer screening. In: Annual International Conference IEEE Engineering Medical and Biology – Proceedings, pp. 2766–2769 (2006)

    Google Scholar 

  10. Cardone, D., Merla, A.: New frontiers for applications of thermal infrared imaging devices: computational psychopshysiology in the neurosciences. Sensors 17, 1042 (2017)

    Article  Google Scholar 

  11. Weigert, M., Nitzsche, N., Kunert, F., Lösch, C., Schulz, H.: The influence of body composition on exercise-associated skin temperature changes after resistance training. J. Therm. Biol. 75, 112–119 (2018)

    Article  Google Scholar 

  12. Polidori, G., Kinne, M., Mereu, T., Beaumont, F., Kinne, M.: Medical infrared thermography in back pain osteopathic management. Complement. Ther. Med. 39, 19–23 (2018)

    Article  Google Scholar 

  13. Simmons, J.D., et al.: Early assessment of burn depth with far infrared time-lapse thermography. J. Am. Coll. Surg. 226(4), 687–693 (2018)

    Article  Google Scholar 

  14. Adam, M., et al.: Automated characterization of diabetic foot using nonlinear features extracted from thermograms. Infrared Phys. Technol. 89, 325–337 (2018)

    Article  Google Scholar 

  15. Sarigoz, T., Ertan, T., Topuz, O., Sevim, Y., Cihan, Y.: Role of digital infrared thermal imaging in the diagnosis of breast mass: a pilot study diagnosis of breast mass by thermography. Infrared Phys. Technol. 91, 214–219 (2018)

    Article  Google Scholar 

  16. Adam, M., et al.: Automated detection of diabetic foot with and without neuropathy using double density-dual tree-complex wavelet transform on foot thermograms. Infrared Phys. Technol. 92, 270–279 (2018)

    Article  Google Scholar 

  17. Picado, A.A., Martinez, E.E., Nova, A.M., Rodriguez, R.S., Martin, B.G.: Thermal map of the diabetic foot using infrared thermography. Infrared Phys. Technol. 93, 59–62 (2018)

    Article  Google Scholar 

  18. Cortes, M.A.D., et al.: A multi-level thresholding method for breast thermograms analysis using Dragonfly algorithm. Infrared Phys. Technol. 93, 346–361 (2018)

    Article  Google Scholar 

  19. Figueiredo, A.A.A., Fernandes, H.C., Guimaraes, G.: Experimental approach for breast cancer center estimation using infrared thermography. Infrared Phys. Technol. 95, 100–112 (2018)

    Article  Google Scholar 

  20. Silva, N.C.M., Castro, H.A., Carvalho, L.C., Chaves, E.C.L., Ruela, L.O., Iunes, D.H.: Reliability of infrared thermography images in the analysis of the plantar surface temperature in Diabetes Mellitus. J. Chiropr. Med. 17(1), 30–35 (2018)

    Article  Google Scholar 

  21. Gatt, A., et al.: The identification of higher forefoot temperatures associated with peripheral arterial disease in type 2 Diabetes Mellitus as detected by thermography. Prim. Care Diab. 12, 3112–3318 (2018)

    Google Scholar 

  22. Kirubha, S.P.A., Anburajan, M., Venkatamaran, B., Menaka, M.: A case study on asymmetrical texture features comparison of breast thermogram and mammogram in normal and breast cancer subject. Biocatal. Agr. Biotechnol. 15, 390–401 (2018)

    Article  Google Scholar 

  23. Neves, E.B., Salamunes, A.C.C., de Oliveira, R.M., Stadnik, A.M.W.: Effect of body fat and gender on body temperature distribution. J. Therm. Biol 70, 1–8 (2017)

    Article  Google Scholar 

  24. Salamunes, A.C.C., Stadnik, A.M.W., Neves, E.B.: The effect of body fat percentage and body fat distribution on skin surface temperature with infrared thermography. J. Therm. Biol 66, 1–9 (2017)

    Article  Google Scholar 

  25. Del Estal, A., Brito, C.J., Galindo, V.E., de Durana, A.L.D., Franchini, E., Quintana, M.S.: Thermal asymmetries in striking combat sports athletes measured by infrared thermography. Sci. Sports 32, e61–e67 (2017)

    Article  Google Scholar 

  26. Su, T.Y., Ho, W.T., Chiang, S.C., Lu, C.Y., Chiang, H.K., Chang, S.W.: Infrared thermography in the evaluation of meibomian gland dysfunction. J. Formos. Med. Assoc. 116, 554–559 (2017)

    Article  Google Scholar 

  27. Albarran, I.A.C., Rangel, J.P.B., Rios, R.A.O., Hernandez, L.A.M.: Human emotions detection based on a smart-thermal system of thermographic images. Infrared Phys. Technol. 81, 250–261 (2017)

    Article  Google Scholar 

  28. Contreras, D.H., Barreto, H.P., Magdaleno, J.R., Bernal, J.A.G., Robles, L.A.: A quantitative index for classification of plantar thermal changes in the diabetic foot. Infrared Phys. Technol. 81, 242–249 (2017)

    Article  Google Scholar 

  29. Kacmaz, S., Ercelebi, E., Zengin, S., Cindoruk, S.: The use of infrared thermal imaging in the diagnosis of deep vein thrombosis. Infrared Phys. Technol. 86, 120–129 (2017)

    Article  Google Scholar 

  30. Etehadtavakol, M., Ng, E.Y.K., Kaabouch, N.: Automatic segmentation of thermal images of diabetic-at-risk feet using the snakes algorithm. Infrared Phys. Technol. 86, 66–76 (2017)

    Article  Google Scholar 

  31. Blasco, J.M., Sanchez, E.S., Martin, J.D., Sanchis, E., Palmer, R.S., Cibrian, R.: A Matlab based interface for infrared thermographic diagnosis of pediatric musculoskeletal injuries. Infrared Phys. Technol. 76, 500–503 (2016)

    Article  Google Scholar 

  32. Formenti, D., et al.: Dynamics of thermographic skin temperature response during squat exercise at two different speeds. J. Therm. Biol 59, 58–63 (2016)

    Article  Google Scholar 

  33. Balci, G.A., Basaran, T., Colakoglu, M.: Analysing visual pattern of skin temperature during submaximal and maximal exercises. Infrared Phys. Technol. 74, 57–62 (2016)

    Article  Google Scholar 

  34. Oliveira, J., Vardasca, R., Pimenta, M., Gabriel, J., Torres, J.: Use of infrared thermography for the diagnosis and grading of sprained ankle injuries. Infrared Phys. Technol. 76, 530–541 (2016)

    Article  Google Scholar 

  35. Fiz, J.A., et al.: Tuberculine reaction measured by infrared thermography. Comput. Methods Programs Biomed. 122, 199–206 (2015)

    Article  Google Scholar 

  36. Acharya, U.R., et al.: Automated diagnosis of dry eye using infrared thermography images. Infrared Phys. Technol. 71, 263–271 (2015)

    Article  Google Scholar 

  37. Mahmoudzadeh, E., Montazeri, M.A., Zekri, M., Sadri, S.: Extended hidden Markov model for optimized segmentation of breast thermography images. Infrared Phys. Technol. 72, 19–28 (2015)

    Article  Google Scholar 

  38. Marins, J.C.B., et al.: Time required to stabilize thermographic images at rest. Infrared Phys. Technol. 65, 30–35 (2014)

    Article  Google Scholar 

  39. Acharya, U.R., et al.: Diagnosis of response and non-response to dry eye treatment using infrared thermography images. Infrared Phys. Technol. 67, 497–503 (2014)

    Article  Google Scholar 

  40. Ludwig, N., Formenti, D., Gargano, M., Alberti, G.: Skin temperature evaluation by infrared thermography: Comparison of image analysis methods. Infrared Phys. Technol. 62, 1–6 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

The work and the contribution were supported by the SPEV project “Smart Solutions in Ubiquitous Computing Environments”, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic (under ID: UHK-FIM-SPEV-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Krejcar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirimtat, A., Krejcar, O., Selamat, A. (2019). A Mini-review of Biomedical Infrared Thermography (B-IRT). In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11466. Springer, Cham. https://doi.org/10.1007/978-3-030-17935-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17935-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17934-2

  • Online ISBN: 978-3-030-17935-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics