Skip to main content

Entropy-Based Detection of Genetic Markers for Bacteria Genotyping

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2019)

Abstract

Genotyping is necessary for the discrimination of bacteria strains. However, methods such as multilocus sequence typing (MLST) or minim typing (mini-MLST) use a combination of several genes. In this paper, we present an augmented method for typing Klebsiella pneumoniae using highly variable fragments of its genome. These fragments were identified based on the entropy of the individual positions. Our method employs both coding and non-coding parts of the genome. These findings may lead to decrease in the number of variable parts used in genotyping and to make laboratory methods faster and cheaper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ranjbar, R., Karami, A., Farshad, S., Giammanco, G.M., Mammina, C.: Typing methods used in the molecular epidemiology of microbial pathogens: a how-to guide. New Microbiol. 37, 1–15 (2014)

    Google Scholar 

  2. Ruppitsch, W.: Molecular typing of bacteria for epidemiological surveillance and outbreak investigation. Die Bodenkultur: J. Land Manag. Food Environ. 67, 199–224 (2016)

    Article  Google Scholar 

  3. Castro-Escarpulli, G., et al.: Identification and typing methods for the study of bacterial infections : a brief review and mycobacterial as case of study. Arch. Clin. Microbiol. 7, 1–10 (2015)

    Google Scholar 

  4. van Belkum, A., et al.: Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin. Microbiol. Infect. 13, 1–46 (2007)

    Article  Google Scholar 

  5. Olive, D.M., Bean, P.: MINIREVIEW principles and applications of methods for DNA-based typing of microbial organisms. J. Clin. Microbiol. 37, 1661–1669 (1999)

    Google Scholar 

  6. Foley, S.L., Lynne, A.M., Nayak, R.: Molecular typing methodologies for microbial source tracking and epidemiological investigations of gram-negative bacterial foodborne pathogens. Infect. Genet. Evol. 9, 430–440 (2009)

    Article  Google Scholar 

  7. Kao, R.R., Haydon, D.T., Lycett, S.J., Murcia, P.R.: Supersize me: how whole-genome sequencing and big data are transforming epidemiology. Trends Microbiol. 22, 282–291 (2014)

    Article  Google Scholar 

  8. Sabat, A.J., Budimir, A., Nashev, D., Sá-Leão, R., van Dijl, J.M., Laurent, F.: Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Eur. Commun. Dis. Bull. 18, 20380 (2013)

    Google Scholar 

  9. Wang, X., King Jordan, I., Mayer, L.W.: A phylogenetic perspective on molecular epidemiology. Mol. Med. Microbiol. 1–3, 517–536 (2014)

    Google Scholar 

  10. Sullivan, C.B., Diggle, M.A., Clarke, S.C.: Multilocus sequence typing: data analysis in clinical microbiology and public health. Mol. Biotechnol. 29, 245–254 (2005)

    Article  Google Scholar 

  11. Li, W., Raoult, D., Fournier, P.E.: Bacterial strain typing in the genomic era. FEMS Microbiol. Rev. 33, 892–916 (2009)

    Article  Google Scholar 

  12. Tong, S.Y.C., Giffard, P.M.: Microbiological applications of high-resolution melting analysis. J. Clin. Microbiol. 50, 3418–3421 (2012)

    Article  Google Scholar 

  13. Andersson, P., Tong, S.Y.C., Bell, J.M., Turnidge, J.D., Giffard, P.M.: Minim typing - a rapid and low cost MLST based typing tool for Klebsiella pneumoniae. PLoS ONE 7, 1–7 (2012)

    Google Scholar 

  14. Brhelova, E., et al.: Validation of Minim typing for fast and accurate discrimination of extended-spectrum, beta-lactamase-producing Klebsiella pneumoniae isolates in tertiary care hospital. Diagn. Microbiol. Infect. Dis. 86, 44–49 (2016)

    Article  Google Scholar 

  15. Li, H.: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. In: Antimicrobial Resistance & Infection Control (2013)

    Google Scholar 

  16. Li, H., et al.: The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009)

    Article  Google Scholar 

  17. Schneider, T.D., Stephens, R.M.: Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990)

    Article  Google Scholar 

  18. Nykrynova, M., Maderankova, D., Bezdicek, M., Lengerova, M., Skutkova, H.: Bioinformatic tools for genotyping of Klebsiella pneumoniae Isolates. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) ITIB 2018. AISC, vol. 762, pp. 419–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91211-0_37

    Chapter  Google Scholar 

  19. Nei, M., Kumar, S.: Molecular Evolution and Phylogenetics. Oxford University Press, New York (2000)

    Google Scholar 

  20. Sigma-Aldrich: Oligonucleotide Melting Temperature. Merck, Darmstadt (2018)

    Google Scholar 

  21. Breslauer, K.J., Frank, R., Blöcker, H., Marky, L.A.: Predicting DNA duplex stability from the base sequence. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 83, pp. 3746–3750 (1986)

    Article  Google Scholar 

  22. Martin, R.M., et al.: Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae. MSphere 1 (2016)

    Google Scholar 

  23. Wyres, K.L., Holt, K.E.: Klebsiella pneumoniae population genomics and antimicrobial-resistant clones. Trends Microbiol. 24, 944–956 (2016)

    Article  Google Scholar 

  24. Dwight, Z., Palais, R., Wittwer, C.T.: uMELT: prediction of high-resolution melting curves and dynamic melting profiles of PCR products in a rich web application. Bioinformatics 27, 1019–1020 (2011)

    Article  Google Scholar 

  25. Zhang, H., Gao, S., Lercher, M.J., Hu, S., Chen, W.-H.: EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Res. 40, W569–W572 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grant project of the Czech Science Foundation [GACR 17-01821S].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marketa Nykrynova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nykrynova, M., Maderankova, D., Barton, V., Bezdicek, M., Lengerova, M., Skutkova, H. (2019). Entropy-Based Detection of Genetic Markers for Bacteria Genotyping. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11466. Springer, Cham. https://doi.org/10.1007/978-3-030-17935-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17935-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17934-2

  • Online ISBN: 978-3-030-17935-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics