Skip to main content

Clustering of Klebsiella Strains Based on Variability in Sequencing Data

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11466))

  • 1191 Accesses

Abstract

Genotyping is a method necessary to distinguish between strains of bacteria. Using whole sequences for analysis is a computational demanding and time-consuming approach. We establish a workflow to convert sequences to a numerical signal representing the variability of sequences. After segmentation and using only parts of the signals, they have still enough information to form a topologically according to the clustering structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tagini, F., Greub, G.: Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review. Eur. J. Clin. Microbiol. Infect. Dis. 36(11), 2007–2020 (2017)

    Article  Google Scholar 

  2. Zankari, E., et al.: Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J. Antimicrob. Chemother. 68(4), 771–777 (2012)

    Article  Google Scholar 

  3. Levy, S.E., Myers, R.M.: Advancements in next-generation sequencing. Annu. Rev. Genomics Hum. Genet. 17, 95–115 (2016)

    Article  Google Scholar 

  4. Mendizabal-Ruiz, G., Román-Godínez, I., Torres-Ramos, S., Salido-Ruiz, R.A., Morales, J.A.: On DNA numerical representations for genomic similarity computation. PloS one 12(3), e0173288 (2017)

    Article  Google Scholar 

  5. Nykrynova, M., Maderankova, D., Bezdicek, M., Lengerova, M., Skutkova, H.: Bioinformatic tools for genotyping of Klebsiella pneumoniae isolates. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) ITIB 2018. AISC, vol. 762, pp. 419–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91211-0_37

    Chapter  Google Scholar 

  6. Wu, K.-M., Li, L.-H., Yan, J.-J., Tsao, N., Liao, T.-L., Tsai, H.-C., et al.: Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J. Bacteriol. 191(14), 4492–4501 (2009). https://doi.org/10.1128/JB.00315-09

    Article  Google Scholar 

  7. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14), 1754–1760 (2009). https://doi.org/10.1093/bioinformatics/btp324

    Article  Google Scholar 

  8. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al.: The sequence alignment/map format and SAMtools. Bioinformatics 25(16), 2078–2079 (2009). https://doi.org/10.1093/bioinformatics/btp352

    Article  Google Scholar 

  9. Okonechnikov, K., Conesa, A., García-Alcalde, F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics https://doi.org/10.1093/bioinformatics/btv566

  10. Ewing, B., Hillier, L.D., Wendl, M.C., Green, P.: Base-calling of automated sequencer traces using Phred l accuracy assessment. Genome Res. 8(3), 175–185 (1998). https://doi.org/10.1101/gr.8.3.175

    Article  Google Scholar 

  11. Pinto, M., Borges, V., Antelo, M., Pinheiro, M., Nunes, A., Azevedo, J., et al.: Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nature Microbiol. 2(1), 112–119 (2017). https://doi.org/10.1038/nmicrobiol.2016.190

    Article  Google Scholar 

  12. Kuhner, M.K., Felsenstein, J.: A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol. 11(3), 459–468 (1994)

    Google Scholar 

Download references

Acknowledgments

This work was supported by grant project of the Czech Science Foundation [GACR 17-01821S].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtech Barton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barton, V., Nykrynova, M., Bezdicek, M., Lengerova, M., Skutkova, H. (2019). Clustering of Klebsiella Strains Based on Variability in Sequencing Data. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11466. Springer, Cham. https://doi.org/10.1007/978-3-030-17935-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17935-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17934-2

  • Online ISBN: 978-3-030-17935-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics