Skip to main content

Model of the Mouth Pressure Signal During Pauses in Total Liquid Ventilation

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11466))

  • 1110 Accesses

Abstract

Total liquid ventilation (TLV) is an innovative experimental method of mechanical ventilation in which lungs are totally filled with a breathable perfluorochemical liquid (PFC). The main objective is to develop a method to estimate the alveolar pressure from a pressure mouth measurement during pause in liquid ventilation. Experimental results show that the measured mouth pressure is disturbed by disturbances (damped oscillations due to fluid-structure tube resonances and cardiogenic oscillation). Numerical analysis of \(P_Y\) allow to obtain a fractional-order model of \(\alpha =0.7\) for the alveolar pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avoine, O., et al.: Total liquid ventilation efficacy in an ovine model of severe meconium aspiration syndrome. Crit. Care Med. 39(6), 1097–1103 (2011)

    Article  Google Scholar 

  • Barkhuijsen, H., de Beer, R., van Ormondt, D.: Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals. J. Magn. Reson. (1969) 73(3), 553–557 (1987)

    Article  Google Scholar 

  • Beaulieu, A., Bossé, D., Micheau, P., Avoine, O., Praud, J.-P., Walti, H.: Measurement of fractional order model parameters of respiratory mechanical impedance in total liquid ventilation. IEEE Trans. Biomed. Eng. 59(2), 323–331 (2012)

    Article  Google Scholar 

  • Costantino, M.L., Micheau, P., Shaffer, T.H., Tredici, S., Wolfson, M.R.: Clinical design functions: round table discussions on the bioengineering of liquid ventilators. ASAIO J 55(3), 206–208 (2009). 6th Internationl Symposium on Perfluorocarbon Application, and Liquid Ventilation

    Article  Google Scholar 

  • Di Paola, M., Fiore, V., Pinnola, F., Valenza, A.: On the influence of the initial ramp for a correct definition of the parameters of fractional viscoelastic materials. Mech. Mat. 69, 63–70 (2014)

    Article  Google Scholar 

  • Gautier, F., Gilbert, J., Dalmont, J.-P., Pico Vila, R.: Wave propagation in a fluid filled rubber tube: theoretical and experimental results for Korteweg’s wave. Acta Acustica United Acustica 93(3), 333–344 (2007)

    Google Scholar 

  • Hildebrandt, J.: Comparison of mathematical models for cat lung and viscoelastic balloon derived by laplace transform methods from pressurevolume data. Bull. Math. Biophys. 31(4), 651–667 (1969)

    Article  Google Scholar 

  • Micheau, M., et al.: A Liquid ventilator prototype for total liquid ventilation preclinical studies. In: Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications, p. 646. Intech (2011)

    Google Scholar 

  • Nadeau, M., et al.: Core body temperature control by total liquid ventilation using a virtual lung temperature sensor. IEEE Trans. Biomed. Eng. 61(12), 2859–2868 (2014)

    Article  Google Scholar 

  • Suki, B., Barabasi, A.-L., Lutchen, K.: Lung tissue viscoelasticity: a mathematical framework and its molecular basis. J. Appl. Physiol. 76(6), 2749–2759 (1994)

    Article  Google Scholar 

  • Suki, B., Ito, S., Stamenovi, D., Lutchen, K., Ingenito, E.: Invited review: biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J. Appl. Physiol. 98(5), 1892–1899 (2005)

    Article  Google Scholar 

  • Tissier, R., Hamanaka, K., Kuno, A., Parker, J.C., Cohen, M.V., Downey, J.M.: Total liquid ventilation provides ultra-fast cardioprotective cooling. J. Am. Coll. Cardiol. 49(5), 601–605 (2007)

    Article  Google Scholar 

  • Tusman, G., et al.: Pulmonary blood flow generates cardiogenic oscillations. Respir. Physiol. Neurobiol. 167(3), 247–254 (2009)

    Article  Google Scholar 

  • Wolfson, M.R., Shaffer, T.H.: Pulmonary applications of perfluorochemical liquids: ventilation and beyond. Paediatr. Respir. Rev. 6(2), 117–127 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Micheau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vandamme, J., Nadeau, M., Mousseau, J., Praud, JP., Micheau, P. (2019). Model of the Mouth Pressure Signal During Pauses in Total Liquid Ventilation. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11466. Springer, Cham. https://doi.org/10.1007/978-3-030-17935-9_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17935-9_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17934-2

  • Online ISBN: 978-3-030-17935-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics