Abstract
One of the key computational problems in comparative genomics is the reconstruction of genomes of ancestral species based on genomes of extant species. Since most dramatic changes in genomic architectures are caused by genome rearrangements, this problem is often posed as minimization of the number of genome rearrangements between extant and ancestral genomes. The basic case of three given genomes is known as the genome median problem. Whole genome duplications (WGDs) represent yet another type of dramatic evolutionary events and inspire the reconstruction of pre-duplicated ancestral genomes, referred to as the genome halving problem. Generalization of WGDs to whole genome multiplication events leads to the genome aliquoting problem.
In the present study, we generalize the adequate subgraphs approach previously proposed for the genome median problem to the genome halving and aliquoting problems. Our study lays a theoretical foundation for practical algorithms for the reconstruction of pre-duplicated ancestral genomes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Here we view genome P as being transformed and P-edges as changing.
- 2.
The classic formulation of the GMP corresponds to \(n = 3\).
- 3.
This enables us to use transformations of alternating graphs, where intermediate graphs do not have genomic interpretations.
References
Alekseyev, M.A., Pevzner, P.A.: Whole genome duplications, multi-break rearrangements, and genome halving problem. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 665–679. Society for Industrial and Applied Mathematics, Philadelphia (2007)
Alekseyev, M.A., Pevzner, P.A.: Colored de Bruijn graphs and the genome halving problem. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(1), 98–107 (2007)
Alekseyev, M.A., Pevzner, P.A.: Multi-break rearrangements and chromosomal evolution. Theor. Comput. Sci. 395(2), 193–202 (2008)
Alexeev, N., Avdeyev, P., Alekseyev, M.A.: Comparative genomics meets topology: a novel view on genome median and halving problems. BMC Bioinform. 17(Suppl. 14), 213–223 (2016)
Avdeyev, P., Alexeev, N., Rong, Y., Alekseyev, M.A.: A unified ILP framework for genome median, halving, and aliquoting problems under DCJ. In: Meidanis, J., Nakhleh, L. (eds.) (RECOMB-CG). LNCS, vol. 10562, pp. 156–178. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-67979-2_9
Avdeyev, P., Jiang, S., Aganezov, S., Hu, F., Alekseyev, M.A.: Reconstruction of ancestral genomes in presence of gene gain and loss. J. Comput. Biol. 23(3), 150–164 (2016)
Caprara, A.: The reversal median problem. INFORMS J. Comput. 15(1), 93–113 (2003)
Dehal, P., Boore, J.L.: Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3(10), e314 (2005)
El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM J. Comput. 32(3), 754–792 (2003)
Gao, N., Yang, N., Tang, J.: Ancestral genome inference using a genetic algorithm approach. PLOS ONE 8(5), 1–6 (2013)
Gavranović, H., Tannier, E.: Guided genome halving: provably optimal solutions provide good insights into the preduplication ancestral genome of saccharomyces cerevisiae. Pac. Symp. Biocomput. 15, 21–30 (2010)
Guyot, R., Keller, B.: Ancestral genome duplication in rice. Genome 47(3), 610–614 (2004)
Kellis, M., Birren, B.W., Lander, E.S.: Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428(6983), 617–624 (2004)
Postlethwait, J.H., et al.: Vertebrate genome evolution and the zebrafish gene map. Nat. Genet. 18(4), 345–349 (1998)
Rajan, V., Xu, A.W., Lin, Y., Swenson, K.M., Moret, B.M.E.: Heuristics for the inversion median problem. BMC Bioinform. 11(Suppl. 1), S30 (2010)
Ruofan, X., Yu, L., Jun, Z., Bing, F., Jijun, T.: A median solver and phylogenetic inference based on double-cut-and-join sorting. J. Comput. Biol. 25(3), 302–312 (2018)
Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinform. 10, 120 (2009)
Warren, R., Sankoff, D.: Genome aliquoting with double cut and join. BMC Bioinform. 10(Suppl. 1), S2 (2009)
Xu, A.W.: A fast and exact algorithm for the median of three problem: a graph decomposition approach. J. Comput. Biol. 16(10), 1369–1381 (2009)
Xu, A.W.: DCJ median problems on linear multichromosomal genomes: graph representation and fast exact solutions. In: Ciccarelli, F.D., Miklós, I. (eds.) RECOMB-CG 2009. LNCS, vol. 5817, pp. 70–83. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04744-2_7
Xu, A.W., Sankoff, D.: Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS, vol. 5251, pp. 25–37. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87361-7_3
Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)
Zhang, M., Arndt, W., Tang, J.: An exact solver for the DCJ median problem. In: Pacific Symposium on Biocomputing 2009, pp. 138–149. World Scientific (2009)
Zheng, C., Zhu, Q., Adam, Z., Sankoff, D.: Guided genome halving: hardness, heuristics and the history of the Hemiascomycetes. Bioinformatics 24(13), i96 (2008)
Zheng, C., Zhu, Q., Sankoff, D.: Genome halving with an outgroup. Evol. Bioinform. 2, 295–302 (2006)
Acknowledgements
The work of Maria Atamanova was supported by the Government of the Russian Federation (Grant 08-08) and JetBrains Research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Avdeyev, P., Atamanova, M., Alekseyev, M.A. (2019). A Uniform Theory of Adequate Subgraphs for the Genome Median, Halving, and Aliquoting Problems. In: Holmes, I., MartÃn-Vide, C., Vega-RodrÃguez, M. (eds) Algorithms for Computational Biology. AlCoB 2019. Lecture Notes in Computer Science(), vol 11488. Springer, Cham. https://doi.org/10.1007/978-3-030-18174-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-18174-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-18173-4
Online ISBN: 978-3-030-18174-1
eBook Packages: Computer ScienceComputer Science (R0)