Skip to main content

Fault Analysis of the New Ukrainian Hash Function Standard: Kupyna

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11358))

Included in the following conference series:

  • 735 Accesses

Abstract

Kupyna has been selected by the Ukrainian government as the new national hash function standard in 2015. In this paper, we apply two fault attacks on Kupyna. In the first attack, we assume that the attacker knows all the hash parameters and aims to recover the input to the hash function. We experiment using three different fault models which are random byte fault model, known byte unique fault model and known byte random fault model. In the second fault attack, we assume that the attacker does not know the entries of the SBoxes used in Kupyna and aims to recover the SBox entries. Our experimental results in both attacks illustrate the importance of protecting implementations of Kupyna against fault analysis attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. GOST R 34.11-2012: Streebog Hash Function. https://www.streebog.net/. Accessed 10 Nov 2017

  2. AlTawy, R., Youssef, A.M.: Differential fault analysis of streebog. In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065, pp. 35–49. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17533-1_3

    Chapter  Google Scholar 

  3. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_1

    Chapter  Google Scholar 

  4. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259

    Chapter  Google Scholar 

  5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in cryptographic computations. J. Cryptology 14(2), 101–119 (2001)

    Article  MathSciNet  Google Scholar 

  6. Clavier, C., Wurcker, A.: Reverse engineering of a secret AES-like cipher by ineffective fault analysis. In: 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 119–128, August 2013

    Google Scholar 

  7. Dobraunig, C., Eichlseder, M., Mendel, F.: Analysis of the Kupyna-256 hash function. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 575–590. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_29

    Chapter  Google Scholar 

  8. Duman, O., Youssef, A.M.: Fault analysis on Kalyna. Inf. Secur. J. Global Persp. 26(5), 249–265 (2017)

    Article  Google Scholar 

  9. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on A.E.S. In: Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45203-4_23

    Chapter  Google Scholar 

  10. Fischer, W., Reuter, C.A.: Differential fault analysis on Grøstl. In: 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 44–54, September 2012

    Google Scholar 

  11. Jian Zou, L.D.: Cryptanalysis of the Round-Reduced Kupyna Hash Function. Cryptology ePrint Archive, Report 2015/959 (2015). https://eprint.iacr.org/2015/959

  12. Joye, M., Tunstall, M. (eds.): Fault Analysis in Cryptography, vol. 147. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29656-7

  13. Kim, C.H., Quisquater, J.J.: Faults, injection methods, and fault attacks. IEEE Des. Test Comput. 24(6), 544–545 (2007)

    Article  Google Scholar 

  14. Li, R., Li, C., Gong, C.: Differential fault analysis on SHACAL-1. In: 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 120–126, September 2009

    Google Scholar 

  15. Mendel, F., Pramstaller, N., Rechberger, C.: A (second) preimage attack on the GOST hash function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 224–234. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_14

    Chapter  Google Scholar 

  16. Mendel, F., Pramstaller, N., Rechberger, C., Kontak, M., Szmidt, J.: Cryptanalysis of the GOST hash function. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 162–178. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_10

    Chapter  Google Scholar 

  17. Oliynykov, R., et al.: A New Standard of Ukraine: The Kupyna Hash Function. Cryptology ePrint Archive, Report 2015/885 (2015). https://eprint.iacr.org/2015/885

  18. Oliynykov, R., et al.: A new encryption standard of Ukraine: the Kalyna block cipher. Cryptology ePrint Archive, Report 2015/650 (2015). https://eprint.iacr.org/2015/650

  19. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN structures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45238-6_7

    Chapter  MATH  Google Scholar 

  20. Zhang Xiaojuan, X.F., Lin, D.: Fault attack on the authenticated cipher ACORN v2. Secur. Commun. Netw. 2017, 16 (2017). Article ID 3834685

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Duman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duman, O., Youssef, A. (2019). Fault Analysis of the New Ukrainian Hash Function Standard: Kupyna. In: Zincir-Heywood, N., Bonfante, G., Debbabi, M., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2018. Lecture Notes in Computer Science(), vol 11358. Springer, Cham. https://doi.org/10.1007/978-3-030-18419-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18419-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18418-6

  • Online ISBN: 978-3-030-18419-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics