Abstract
Kupyna has been selected by the Ukrainian government as the new national hash function standard in 2015. In this paper, we apply two fault attacks on Kupyna. In the first attack, we assume that the attacker knows all the hash parameters and aims to recover the input to the hash function. We experiment using three different fault models which are random byte fault model, known byte unique fault model and known byte random fault model. In the second fault attack, we assume that the attacker does not know the entries of the SBoxes used in Kupyna and aims to recover the SBox entries. Our experimental results in both attacks illustrate the importance of protecting implementations of Kupyna against fault analysis attacks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
GOST R 34.11-2012: Streebog Hash Function. https://www.streebog.net/. Accessed 10 Nov 2017
AlTawy, R., Youssef, A.M.: Differential fault analysis of streebog. In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065, pp. 35–49. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17533-1_3
Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_1
Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259
Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in cryptographic computations. J. Cryptology 14(2), 101–119 (2001)
Clavier, C., Wurcker, A.: Reverse engineering of a secret AES-like cipher by ineffective fault analysis. In: 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 119–128, August 2013
Dobraunig, C., Eichlseder, M., Mendel, F.: Analysis of the Kupyna-256 hash function. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 575–590. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_29
Duman, O., Youssef, A.M.: Fault analysis on Kalyna. Inf. Secur. J. Global Persp. 26(5), 249–265 (2017)
Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on A.E.S. In: Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45203-4_23
Fischer, W., Reuter, C.A.: Differential fault analysis on Grøstl. In: 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 44–54, September 2012
Jian Zou, L.D.: Cryptanalysis of the Round-Reduced Kupyna Hash Function. Cryptology ePrint Archive, Report 2015/959 (2015). https://eprint.iacr.org/2015/959
Joye, M., Tunstall, M. (eds.): Fault Analysis in Cryptography, vol. 147. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29656-7
Kim, C.H., Quisquater, J.J.: Faults, injection methods, and fault attacks. IEEE Des. Test Comput. 24(6), 544–545 (2007)
Li, R., Li, C., Gong, C.: Differential fault analysis on SHACAL-1. In: 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 120–126, September 2009
Mendel, F., Pramstaller, N., Rechberger, C.: A (second) preimage attack on the GOST hash function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 224–234. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_14
Mendel, F., Pramstaller, N., Rechberger, C., Kontak, M., Szmidt, J.: Cryptanalysis of the GOST hash function. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 162–178. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_10
Oliynykov, R., et al.: A New Standard of Ukraine: The Kupyna Hash Function. Cryptology ePrint Archive, Report 2015/885 (2015). https://eprint.iacr.org/2015/885
Oliynykov, R., et al.: A new encryption standard of Ukraine: the Kalyna block cipher. Cryptology ePrint Archive, Report 2015/650 (2015). https://eprint.iacr.org/2015/650
Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN structures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45238-6_7
Zhang Xiaojuan, X.F., Lin, D.: Fault attack on the authenticated cipher ACORN v2. Secur. Commun. Netw. 2017, 16 (2017). Article ID 3834685
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Duman, O., Youssef, A. (2019). Fault Analysis of the New Ukrainian Hash Function Standard: Kupyna. In: Zincir-Heywood, N., Bonfante, G., Debbabi, M., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2018. Lecture Notes in Computer Science(), vol 11358. Springer, Cham. https://doi.org/10.1007/978-3-030-18419-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-18419-3_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-18418-6
Online ISBN: 978-3-030-18419-3
eBook Packages: Computer ScienceComputer Science (R0)