Skip to main content

Combining Meta-Graph and Attention for Recommendation over Heterogenous Information Network

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2019)

Abstract

Recently heterogeneous information network (HIN) has gained wide attention in recommender systems due to its flexibility in modeling rich objects and complex relationships. It’s still challenging for HIN based recommenders to capture high-level structure and fuse the mined features of users and items effectively. In this paper, we propose an approach for the recommendation over HIN, called MGAR, which combines Meta-Graph and Attention to address the challenge. Informally speaking, meta-graph is applied to feature extraction, so as to capture more semantic information, while the attention mechanism is used to fuse the features arising from different meta-graphs. MGAR can be divided into two stages. In the first stage, we apply the matrix factorization technique to generate latent factors based on predefined meta-graphs. In the second stage, the embeddings of users and items are fused with the neural attention mechanism. And then the deep neural network is employed to make recommendations by modeling complicated interactions. Experiments over two real datasets indicate MGAR achieves state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.yelp.com.

  2. 2.

    http://www.yelp.com/dataset/.

  3. 3.

    http://jmcauley.ucsd.edu/data/amazon/.

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. CoRR abs/1409.0473 (2014)

    Google Scholar 

  2. Devooght, R., Bersini, H.: Long and short-term recommendations with recurrent neural networks. In: Bieliková, M., Herder, E., Cena, F., Desmarais, M.C. (eds.) Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, UMAP 2017, 09–12 July 2017, Bratislava, Slovakia, pp. 13–21. ACM (2017)

    Google Scholar 

  3. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4–9 December 2017, Long Beach, CA, USA, pp. 1025–1035 (2017)

    Google Scholar 

  4. Han, X., Shi, C., Wang, S., Yu, P.S., Song, L.: Aspect-level deep collaborative filtering via heterogeneous information networks. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, 13–19 July 2018, Stockholm, Sweden, pp. 3393–3399 (2018)

    Google Scholar 

  5. He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: WWW, pp. 507–517. ACM (2016)

    Google Scholar 

  6. Huang, Z., Zheng, Y., Cheng, R., Sun, Y., Mamoulis, N., Li, X.: Meta structure: Computing relevance in large heterogeneous information networks. In: KDD, pp. 1595–1604. ACM (2016)

    Google Scholar 

  7. Ji, M., Han, J., Danilevsky, M.: Ranking-based classification of heterogeneous information networks. In: KDD, pp. 1298–1306. ACM (2011)

    Google Scholar 

  8. Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transductive classification on heterogeneous information networks. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6321, pp. 570–586. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15880-3_42

    Chapter  Google Scholar 

  9. Jiang, H., Song, Y., Wang, C., Zhang, M., Sun, Y.: Semi-supervised learning over heterogeneous information networks by ensemble of meta-graph guided random walks. In: IJCAI, pp. 1944–1950 (2017)

    Google Scholar 

  10. Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: CIKM, pp. 179–188. ACM (2013)

    Google Scholar 

  11. McAuley, J.J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommendations on styles and substitutes. In: SIGIR, pp. 43–52. ACM (2015)

    Google Scholar 

  12. Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. In: Advances in Neural Information Processing Systems, pp. 2204–2212 (2014)

    Google Scholar 

  13. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML, pp. 807–814. Omnipress (2010)

    Google Scholar 

  14. Rehurek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. Citeseer (2010)

    Google Scholar 

  15. Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000. IEEE Computer Society (2010)

    Google Scholar 

  16. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS, pp. 1257–1264. Curran Associates, Inc. (2007)

    Google Scholar 

  17. Shi, C., Zhang, Z., Luo, P., Yu, P.S., Yue, Y., Wu, B.: Semantic path based personalized recommendation on weighted heterogeneous information networks. In: CIKM, pp. 453–462. ACM (2015)

    Google Scholar 

  18. Sudhakaran, S., Lanz, O.: Attention is all we need: nailing down object-centric attention for egocentric activity recognition. In: British Machine Vision Conference 2018, BMVC 2018, 3–6 September 2018, Northumbria University, Newcastle, UK, p. 229. BMVA Press (2018)

    Google Scholar 

  19. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: meta path-based top-k similarity search in heterogeneous information networks. PVLDB 4(11), 992–1003 (2011)

    Google Scholar 

  20. Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., Wu, T.: Rankclus: integrating clustering with ranking for heterogeneous information network analysis. In: EDBT. ACM International Conference Proceeding Series, vol. 360, pp. 565–576. ACM (2009)

    Google Scholar 

  21. Sun, Y., Norick, B., Han, J., Yan, X., Yu, P.S., Yu, X.: Integrating meta-path selection with user-guided object clustering in heterogeneous information networks. In: KDD, pp. 1348–1356. ACM (2012)

    Google Scholar 

  22. Wang, F., et al.: Residual attention network for image classification. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 21–26 July 2017, Honolulu, HI, USA, pp. 6450–6458. IEEE Computer Society (2017)

    Google Scholar 

  23. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, 6–11 July 2015, Lille, France. JMLR Workshop and Conference Proceedings, vol. 37, pp. 2048–2057 (2015)

    Google Scholar 

  24. Yang, C., Zhao, C., Wang, H., Qiu, R., Li, Y., Mu, K.: A semantic path-based similarity measure for weighted heterogeneous information networks. In: Liu, W., Giunchiglia, F., Yang, B. (eds.) KSEM 2018. LNCS (LNAI), vol. 11061, pp. 311–323. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99365-2_28

    Chapter  Google Scholar 

  25. Yu, X., Ren, X., Gu, Q., Sun, Y., Han, J.: Collaborative filtering with entity similarity regularization in heterogeneous information networks. In: IJCAI HINA (2013)

    Google Scholar 

  26. Yu, X., et al.: Personalized entity recommendation: a heterogeneous information network approach. In: WSDM, pp. 283–292. ACM (2014)

    Google Scholar 

  27. Zhao, H., Yao, Q., Li, J., Song, Y., Lee, D.L.: Meta-graph based recommendation fusion over heterogeneous information networks. In: KDD, pp. 635–644. ACM (2017)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China under Grant No. 61572002, No. 61170300, No. 61690201, and No. 61732001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenfei Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, C., Wang, H., Li, Y., Mu, K. (2019). Combining Meta-Graph and Attention for Recommendation over Heterogenous Information Network. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds) Database Systems for Advanced Applications. DASFAA 2019. Lecture Notes in Computer Science(), vol 11446. Springer, Cham. https://doi.org/10.1007/978-3-030-18576-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18576-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18575-6

  • Online ISBN: 978-3-030-18576-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics