Skip to main content

Bipartite Network Embedding via Effective Integration of Explicit and Implicit Relations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11446))

Abstract

Network representation learning, or network embedding, aims at mapping the nodes of the network to low-dimensional vector space, in which the learned node representations can be used for a variety of tasks, such as node classification, link prediction, and visualization. As a special class of complex networks, the bipartite network is composed of two different types of nodes in which the links only exist among different types of nodes, has important applications in the recommendation system, link prediction, and disease diagnosis. However, most existing methods for network representation learning are aimed at homogeneous networks in general, while the special properties of bipartite networks are not taken into account, such as the implicit relations (i.e., unobserved links) between nodes of the same type. In this paper, we propose a novel deep learning framework for bipartite networks, which integrates the explicit and implicit relations, while preserving the local and global structure, to learn the highly non-linear representations of nodes. Extensive experiments conducted on several real-world datasets, based on the link prediction, recommendation, and visualization, demonstrate the effectiveness of our proposed method compared with state-of-the-art network representation learning based methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://dblp.uni-trier.de/xml.

  2. 2.

    http://konect.uni-koblenz.de/networks/pics_ti.

  3. 3.

    http://konect.uni-koblenz.de/networks/wikipedia_link_en.

  4. 4.

    https://www.aminer.cn/data.

References

  1. Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding: problems, techniques and applications. IEEE Trans. Knowl. Data Eng. 30, 1616–1637 (2018)

    Article  Google Scholar 

  2. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans. Knowl. Data Eng. 31(5), 833–852 (2019)

    Google Scholar 

  3. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144. ACM (2017)

    Google Scholar 

  4. Fu, T., Lee, W.C., Lei, Z.: Hin2vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1797–1806. ACM (2017)

    Google Scholar 

  5. Gao, M., Chen, L., He, X., Zhou, A.: Bine: bipartite network embedding. In: Proceedings of the 41th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 715–724. ACM (2018)

    Google Scholar 

  6. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  7. Huang, Z., Mamoulis, N.: Heterogeneous information network embedding for meta path based proximity. arXiv preprint arXiv:1701.05291 (2017)

  8. Jin, D., Ge, M., Yang, L., He, D., Wang, L., Zhang, W.: Integrative network embedding via deep joint reconstruction. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 3407–3413. AAAI Press (2018)

    Google Scholar 

  9. Jolliffe, I.: Principal component analysis. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science. Springer, Heidelberg (2011)

    Google Scholar 

  10. Kabbur, S., Ning, X., Karypis, G.: Fism: factored item similarity models for top-n recommender systems. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 659–667. ACM (2013)

    Google Scholar 

  11. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A: Stat. Mech. Appl. 390(6), 1150–1170 (2011)

    Article  Google Scholar 

  12. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  13. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press (2009)

    Google Scholar 

  14. Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approximate Reasoning 50(7), 969–978 (2009)

    Article  Google Scholar 

  15. Takács, G., Tikk, D.: Alternating least squares for personalized ranking. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 83–90. ACM (2012)

    Google Scholar 

  16. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  17. Turner, C.R., Wolf, A.L., Fuggetta, A., Lavazza, L.: Feature engineering. In: Proceedings of the 9th International Workshop on Software Specification and Design, p. 162. IEEE Computer Society (1998)

    Google Scholar 

  18. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  19. Xu, H., Liu, H., Wang, W., Sun, Y., Jiao, P.: NE-FLGC: network embedding based on fusing local (first-order) and global (second-order) network structure with node content. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10938, pp. 260–271. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93037-4_21

    Chapter  Google Scholar 

  20. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  21. Zhou, T., Kuscsik, Z., Liu, J.G., Medo, M., Wakeling, J.R., Zhang, Y.C.: Solving the apparent diversity-accuracy dilemma of recommender systems. Proc. Natl. Acad. Sci. 107(10), 4511–4515 (2010)

    Article  Google Scholar 

  22. Zhou, T., Ren, J., Medo, M., Zhang, Y.C.: Bipartite network projection and personal recommendation. Phys. Rev. E 76(4), 046115 (2007)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (2018YFC0809800, 2016QY15Z2502-02, 2018YFC0831000), the National Natural Science Foundation of China (91746205, 51438009, U1736103), Tianjin Science and Technology Development Strategic Research Project (17ZLZ DZF00430) and the Key R&D Program of Tianjin (18YFZCSF01370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Jiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Jiao, P., Wang, W., Lu, C., Liu, H., Wang, B. (2019). Bipartite Network Embedding via Effective Integration of Explicit and Implicit Relations. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds) Database Systems for Advanced Applications. DASFAA 2019. Lecture Notes in Computer Science(), vol 11446. Springer, Cham. https://doi.org/10.1007/978-3-030-18576-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18576-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18575-6

  • Online ISBN: 978-3-030-18576-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics