Abstract
FPGAs are rapidly gaining traction in the domain of HPC thanks to the advent of FPGA-friendly data-flow workloads, as well as their flexibility and energy efficiency. However, these devices pose a new challenge in terms of how to better support their communications, since standard protocols are known to hinder their performance greatly either by requiring CPU intervention or consuming excessive FPGA logic. Hence, the community is moving towards custom-made solutions. This paper analyses an optimization to our custom, reliable, interconnect with connectionless transport—a mechanism to register and track inbound RDMA communication at the receive-side. This way, it provides completion notifications directly to the remote node which saves a round-trip latency. The entire mechanism is designed to sit within the fabric of the FPGA, requiring no software intervention. Our solution is able to reduce the latency of a receive operation by around 20\(\%\) for small message sizes (4 KB) over a single hop (longer distances would experience even higher improvement). Results from synthesis over a wide parameter range confirm this optimization is scalable both in terms of the number of concurrent outstanding RDMA operations, and the maximum message size.
This work was funded by the European Union’s Horizon 2020 research and innovation programme under grant agreements No 671553 and 754337.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Caulfield, A.M., et al.: A cloud-scale acceleration architecture. In: The 49th Annual IEEE/ACM International Symposium on Microarchitecture, p. 7. IEEE Press (2016)
Concatto, C., et al.: A CAM-free exascalable HPC router for low-energy communications. In: Berekovic, M., Buchty, R., Hamann, H., Koch, D., Pionteck, T. (eds.) ARCS 2018. LNCS, vol. 10793, pp. 99–111. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77610-1_8
Dally, W.J., Aoki, H.: Deadlock-free adaptive routing in multicomputer networks using virtual channels. IEEE Trans. Parallel Distrib. Syst. 4(4), 466–475 (1993)
El-Ghazawi, T., El-Araby, E., Huang, M., Gaj, K., Kindratenko, V., Buell, D.: The promise of high-performance reconfigurable computing. Computer 41(2), 69–76 (2008)
Grant, R.E., Rashti, M.J., Balaji, P., Afsahi, A.: Scalable connectionless RDMA over unreliable datagrams. Parallel Comput. 48, 15–39 (2015)
Katevenis, M., et al.: Next generation of exascale-class systems: exanest project and the status of its interconnect and storage development. Microprocess. Microsyst. 61, 58–71 (2018)
Katevenis, M., et al.: The exanest project: interconnects, storage, and packaging for exascale systems. In: 2016 Euromicro Conference on Digital System Design (DSD), pp. 60–67. IEEE (2016)
Koop, M.J., Sur, S., Gao, Q., Panda, D.K.: High performance MPI design using unreliable datagram for ultra-scale infiniband clusters. In: Proceedings of the 21st Annual International Conference on Supercomputing, pp. 180–189. ACM (2007)
Lant, J., et al.: Enabling shared memory communication in networks of mpsocs. Concurr. Comput. Pract. Exp. (CCPE), e4774 (2018)
Mogul, J.C.: TCP offload is a dumb idea whose time has come. In: HotOS, pp. 25–30 (2003)
Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K., Chung, E.S.: Accelerating deep convolutional neural networks using specialized hardware. Microsoft Res. Whitepaper 2(11), 1–4 (2015)
PLDA: An implementation of the TCP/IP protocol suite for the Linux operating system (2018). https://github.com/torvalds/linux/blob/master/net/ipv4/tcp.c
Intilop Corporation: 10 g bit TCP offload engine + PCIe/DMA soc IP (2012)
Ohio Supercomputing Centre: Software implementation and testing of iWarp protocol (2018). https://www.osc.edu/research/network_file/projects/iwarp
Sidler, D., Alonso, G., Blott, M., Karras, K., Vissers, K., Carley, R.: Scalable 10Gbps TCP/IP stack architecture for reconfigurable hardware. In: 2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 36–43. IEEE (2015)
Underwood, K.D., Hemmert, K.S., Ulmer, C.D.: From silicon to science: the long road to production reconfigurable supercomputing. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 2(4), 26 (2009)
Xilinx Inc.: Zynq UltraScale + MPSoC Data Sheet: Overview (2018). v1.7
Xirouchakis, P., et al.: The network interface of the exanest hpc prototype. Technical report, ICS-FORTH / TR 471, Heraklion, Crete, Greece (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Lant, J., Attwood, A., Navaridas, J., Lujan, M., Goodacre, J. (2019). Receive-Side Notification for Enhanced RDMA in FPGA Based Networks. In: Schoeberl, M., Hochberger, C., Uhrig, S., Brehm, J., Pionteck, T. (eds) Architecture of Computing Systems – ARCS 2019. ARCS 2019. Lecture Notes in Computer Science(), vol 11479. Springer, Cham. https://doi.org/10.1007/978-3-030-18656-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-18656-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-18655-5
Online ISBN: 978-3-030-18656-2
eBook Packages: Computer ScienceComputer Science (R0)