Abstract
This paper presents a framework to support parallel swarm search algorithms for solving black-box optimization problems. Looking at swarm based optimization, it is important to find a well fitted set of parameters to increase the convergence rate for finding the optimum. This fitting is problem dependent and time-consuming. The presented framework automates this fitting. After finding parameters for the best algorithm, a good mapping of algorithmic properties onto a parallel hardware is crucial for the overall efficiency of a parallel implementation. Swarm based algorithms are population based, the best number of individuals per swarm and, in the parallel case, the best number of swarms in terms of efficiency and/or performance has to be found. Data dependencies result in communication patterns that have to be cheaper in terms of execution times than the computing in between communications. Taking all this into account, the presented framework enables the programmer to implement efficient and adaptive parallel swarm search algorithms. The approach is evaluated through benchmarks and real world problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
https://www.openmp.org/. Accessed 2 Dec 2018.
- 2.
The ratio of the sequential execution time to the parallel execution time.
- 3.
https://xlinux.nist.gov/dads/HTML/binarySearch.html. Accessed 2 Dec 2018.
- 4.
https://www.mcs.anl.gov/research/projects/mpi/. Accessed 2 Dec 2018.
- 5.
https://github.com/rshuka/PASS. Accessed 2 Dec 2018.
References
Abadlia, H., Smairi, N., Ghedira, K.: Particle swarm optimization based on dynamic island model. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 709–716 (2017)
Addis, B., et al.: A global optimization method for the design of space trajectories. Comput. Optim. Appl. 48(3), 635–652 (2011)
European Space Agency and Advanced Concepts Team: Global Trajectory Optimization Problems Database, 19 November 2018. http://www.esa.int/gsp/ACT/projects/gtop/gtop.html
European Space Agency and Advanced Concepts Team: Messenger (Full Version), 19 November 2018. http://www.esa.int/gsp/ACT/projects/gtop/messenger_full.html
Ahmed, H.: An Efficient Fitness-Based Stagnation Detection Method for Particle Swarm Optimization (2014)
Alam, M., Das, B., Pant, V.: A comparative study of metaheuristic optimization approaches for directional overcurrent relays coordination. Electr. Power Syst. Res. 128, 39–52 (2015)
Allugundu, I., et al.: Acceleration of distance-to-default with hardware-software co-design, August 2012, pp. 338–344 (2012)
Altinoz, O.T., Yılmaz, A.E.: Comparison of Parallel CUDA and OpenMP Implementations of Particle Swarm Optimization
Bonyadi, M.R., Michalewicz, Z.: Analysis of stability, local convergence, and transformation sensitivity of a variant of the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 20, 370–385 (2016). ISSN 1089–778X
Chen, T.-Y., Chi, T.-M.: On the improvements of the particle swarm optimization algorithm. Adv. Eng. Soft. 41(2), 229–239 (2010)
Clerc, M.: Standard Particle Swarm Optimization, 19 November 2018. http://clerc.maurice.free.fr/pso/SPSO_descriptions.pdf
Molga, M., Smutnicki, C.: Test functions for optimization needs, 19 November 2018. http://new.zsd.iiar.pwr.wroc.pl/files/docs/functions.pdf
Isikveren, A., et al.: Optimization of commercial aircraft utilizing battery-based voltaic-joule/Brayton propulsion. J. Airc. 54, 246–261 (2016)
Jong-Yul, K., et al.: PC cluster based parallel PSO algorithm for optimal power flow. In: Proceedings of the International Conference on Intelligent Systems Applications to Power Systems (2007)
Kahar, N.H.B.A., Zobaa, A.F.: Optimal single tuned damped filter for mitigating harmonics using MIDACO. In: 2017 IEEE International Conference on Environment and Electrical Engineering (2017)
Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks (1995)
Laguna-Sánchez, G.A., et al.: Comparative study of parallel variants for a particle swarm optimization algorithm implemented on a multithreading GPU. J. Appl. Res. Technol. 7, 292–307 (2009)
Latter, B.D.H.: The island model of population differentiations: a general solution. Genetics 73(1), 147–157 (1973)
Liu, Z., et al.: OpenMP-based multi-core parallel cooperative PSO with ICS using machine learning for global optimization problem. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics (2015)
Mahajan, N.R., Mysore, S.P.: Combinatorial neural inhibition for stimulus selection across space. bioRxiv (2018)
Roberge, V., Tarbouchi, M.: Comparison of parallel particle swarm optimizers for graphical processing units and multicore processors. J. Comput. Intell. Appl. 12, 1350006 (2013)
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation (1998)
Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0040810
Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997). ISSN 1573–2916
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)
Zambrano-Bigiarini, M., Clerc, M., Rojas, R.: Standard particle swarm optimisation 2011 at CEC-2013: a baseline for future PSO improvements. In: Proceedings of the Congress on Evolutionary Computation (2013)
Zhang, J., et al.: A fast restarting particle swarm optimizer. In: 2014 IEEE Congress on Evolutionary Computation (CEC) (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Shuka, R., Brehm, J. (2019). A Parallel Adaptive Swarm Search Framework for Solving Black-Box Optimization Problems. In: Schoeberl, M., Hochberger, C., Uhrig, S., Brehm, J., Pionteck, T. (eds) Architecture of Computing Systems – ARCS 2019. ARCS 2019. Lecture Notes in Computer Science(), vol 11479. Springer, Cham. https://doi.org/10.1007/978-3-030-18656-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-18656-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-18655-5
Online ISBN: 978-3-030-18656-2
eBook Packages: Computer ScienceComputer Science (R0)