Skip to main content

Abstract

In a parallel with the trends in the automotive domain, we discuss the future challenges of automation of train control, where train to infrastructure and train to train communication will support distributed control algorithms, while on board artificial intelligence will provide autonomous control decisions. Already installed systems, like ERTMS-ETCS, are actually distributed systems that span over geographical areas and are able to safely control large physical systems. But still, crucial decisions are taken at centralized places, that concentrate communications with mobile objects. Several prospected advances, aimed at increasing capacity and automation of rail transport, go in the direction of a more dynamic network connection among mobile components, in which decisions are actually taken in a distributed way.

A concept of dynamic safety envelope within which a train can safely move then emerges, built by a fusion of reliable information coming from the infrastructure and from other trains, as well as autonomously harvested by on-board “intelligent” sensors. This paper discusses some plausible scenarios in this respect and presents the basic concepts behind them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For brevity, we here ignore the usual distinction between ATP and ATC (Automatic Train Control).

References

  1. Siemens mobility presents worlds first autonomous tram, 3 September 2018. https://www.siemens.com/press/en/pressrelease/?press=/en/pressrelease/2018/mobility/pr2018090290moen.htm

  2. Rio Tinto completes autohaul autonomous train project, 4 January 2019. https://www.railwaygazette.com/news/news/australasia/single-view/view/rio-tinto-completes-autohaul-autonomous-train-project.html

  3. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed railway control system. IEEE Trans. Softw. Eng. 26(8), 687–701 (2000). https://doi.org/10.1109/32.879808

    Article  Google Scholar 

  4. Banci, M., Fantechi, A., Gnesi, S.: The role of formal methods in developing a distribuited railway interlocking system. In: Proceedings of Formal Methods for Automation and Safety in Railway and Automotive Systems, FORMS/FORMAT, Braunschweig, Germany, pp. 79–91 (2004)

    Google Scholar 

  5. Basile, D., et al.: On the industrial uptake of formal methods in the railway domain. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 20–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98938-9_2

    Chapter  Google Scholar 

  6. Basile, D., Fantechi, A., Rucher, L., Mandò, G.: Statistical model checking of hazards in an autonomous tramway positioning system. In: Collart-Dutilleul, S., et al. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 41–58 (2019)

    Google Scholar 

  7. Bergenhem, C., Pettersson, H., Coelingh, E., Englund, C., Shladover, S., Tsugawa, S.: Overview of platooning systems. In: 19th ITS World Congress, Vienna, Austria (2012)

    Google Scholar 

  8. Bock, U., Bikker, G.: Design and development of a future freight train concept - virtually coupled train formations. In: 9th IFAC Symposium Control in Transportation Systems. IFAC, Braunschweig (2000)

    Article  Google Scholar 

  9. Braband, J.: It security framework for safe railway automation. In: Mahboob, Q., Zio, E. (eds.) RAMS in Railway Systems, pp. 393–402. CRC Press (2018)

    Google Scholar 

  10. Carnevali, L., Flammini, F., Paolieri, M., Vicario, E.: Non-markovian performability evaluation of ERTMS/ETCS level 3. In: Beltrán, M., Knottenbelt, W., Bradley, J. (eds.) EPEW 2015. LNCS, vol. 9272, pp. 47–62. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23267-6_4

    Chapter  Google Scholar 

  11. Fantechi, A., Gnesi, S., Haxthausen, A., van de Pol, J., Roveri, M., Treharne, H.: SaRDIn - a safe reconfigurable distributed interlocking. In: Proceedings 11th World Congress on Railway Research, WCRR, Ferrovie dello Stato Italiane, Milano (2016)

    Google Scholar 

  12. Fantechi, A., Haxthausen, A.E.: Safety interlocking as a distributed mutual exclusion problem. In: Howar, F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp. 52–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00244-2_4

    Chapter  Google Scholar 

  13. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985). https://doi.org/10.1145/3149.214121

    Article  MathSciNet  MATH  Google Scholar 

  14. Flammini, F., Marrone, S., Nardone, R., Petrillo, A., Santini, S., Vittorini, V.: Towards railway virtual coupling. In: International Transportation Electrification Conference (ITEC). IEEE, Nottingham, UK (2018). https://doi.org/10.1109/ESARS-ITEC.2018.8607523

  15. Vehicular technology society: 1474.1 - standard for communications- based train control (CBTC) - performance and functional requirements. IEEE (2004)

    Google Scholar 

  16. Karra, S.L., Larsen, K.G., Lorber, F., Srba, J.: Safe and time-optimal control for railway games. In: Collart-Dutilleul, S., et al. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 106–122 (2019)

    Google Scholar 

  17. Kuperberg, M., Kindler, D., Jeschke, S.: Are smart contracts and blockchains suitable for decentralized railway control? CoRR abs/1901.06236 (2019)

    Google Scholar 

  18. Lecomte, T., Pinger, R., Romanovsky, A.B. (eds.): Reliability, safety, and security of railway systems. modelling, analysis, verification, and certification. In: Proceedings of First International Conference, RSSRail 2016, Paris, France, 28–30 June, 2016, LNCS, vol. 9707. Springer (2016). https://doi.org/10.1007/978-3-319-33951-1

    Google Scholar 

  19. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional model checking of interlocking systems for lines with multiple stations. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 146–162. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_11

    Chapter  Google Scholar 

  20. Mayer, L., Guida, P.L., Milizia, E.: Impianti Ferroviari. CIFI (2016)

    Google Scholar 

  21. Michaut, P.: Method for managing the circulation of vehicles on a railway network and related system. Patent US 8820685, B2 (2014)

    Google Scholar 

  22. Ohmstede, H.: Method for reducing data in railway operation. Patent US 7578485 (2009)

    Google Scholar 

  23. Pépin, F., Vigliotti, M.G.: Risk assessment of the 3Des in ERTMS. In: Lecomte et al. [18], pp. 79–92 (2016). https://doi.org/10.1007/978-3-319-33951-1_6

    Google Scholar 

  24. Ponsard, C., Grandclaudon, J., Massonet, P., Touzani, M.: Assessment of emerging standards for safety and security co-design on a railway case study. In: Abdelwahed, E.H., et al. (eds.) MEDI 2018. CCIS, vol. 929, pp. 130–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02852-7_12

    Chapter  Google Scholar 

  25. Rispoli, F., Neri, A., Stallo, C., Salvatori, P., Santucci, F.: Synergies for trains and cars automation in the era of virtual networking. J. Transp. Technol. 8, 175–193 (2018). https://doi.org/10.4236/jtts.2018.83010

    Article  Google Scholar 

  26. de Ruiter, J., Thomas, R.J., Chothia, T.: A formal security analysis of ERTMS train to trackside protocols. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 53–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33951-1_4

    Chapter  Google Scholar 

  27. Sanders, W.H.: Quantitative security metrics: unattainable holy grail or a vital breakthrough within our reach? IEEE Secur. Priv. 12(2), 67–69 (2014). https://doi.org/10.1109/MSP.2014.31

    Article  Google Scholar 

  28. Schulz, O., Peleska, J.: Reliability analysis of safety-related communication architectures. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 1–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15651-9_1

    Chapter  Google Scholar 

  29. Shift2Rail Joint Undertaking: Multi-annual action plan, November 2015. http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/jtis/h2020-maap-shift2rail_en.pdf

  30. UIC: Virtually coupled trains. http://www.railway-energy.org/static/Virtually_coupled_trains_86.php. Accessed 24 Feb 2019

  31. Whitwam, F., Kanner, A.: Control of automatic guided vehicles without wayside interlocking. Patent US 20120323411, A1 (2012)

    Google Scholar 

  32. Zimmermann, A., Hommel, G.: Towards modeling and evaluation of ETCS real-time communication and operation. J. Syst. Softw. 77(1), 47–54 (2005). https://doi.org/10.1016/j.jss.2003.12.039

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Stefania Gnesi for her useful comments on a draft of this paper.

Work partially supported by the H2020 Shift2Rail-RIA-777561 project ASTRail and by Tuscany Region project POR FESR 2014-2020 SISTER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Fantechi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fantechi, A. (2019). Connected or Autonomous Trains?. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds) Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. RSSRail 2019. Lecture Notes in Computer Science(), vol 11495. Springer, Cham. https://doi.org/10.1007/978-3-030-18744-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18744-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18743-9

  • Online ISBN: 978-3-030-18744-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics