Skip to main content

Super-Resolution Reconstruction Using Deep Learning: Should We Go Deeper?

  • Conference paper
  • First Online:
Beyond Databases, Architectures and Structures. Paving the Road to Smart Data Processing and Analysis (BDAS 2019)

Abstract

Super-resolution reconstruction (SRR) is aimed at increasing image spatial resolution from multiple images presenting the same scene or from a single image based on the learned relation between low and high resolution. Emergence of deep learning allowed for improving single-image SRR significantly in the last few years, and a variety of deep convolutional neural networks of different depth and complexity were proposed for this purpose. However, although there are usually some comparisons reported in the papers introducing new deep models for SRR, such experimental studies are somehow limited. First, the networks are often trained using different training data, and/or prepared in a different way. Second, the validation is performed for artificially-degraded images, which does not correspond to the real-world conditions. In this paper, we report the results of our extensive experimental study to compare several state-of-the-art SRR techniques which exploit deep neural networks. We train all the networks using the same training setup and validate them using several datasets of different nature, including real-life scenarios. This allows us to draw interesting conclusions that may be helpful for selecting the most appropriate deep architecture for a given SRR scenario, as well as for creating new SRR solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://doi.org/10.7910/DVN/DKSPJF.

References

  1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017

    Google Scholar 

  2. Benecki, P., Kawulok, M., Kostrzewa, D., Skonieczny, L.: Evaluating super-resolution reconstruction of satellite images. Acta Astronaut. 153, 15–25 (2018)

    Article  Google Scholar 

  3. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  4. Berkeley Segmentation Dataset: 01 December 2019. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

  5. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: Proceedings of the British Machine Vision Conference, pp. 135.1–135.10. BMVA Press (2012)

    Google Scholar 

  6. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, CVPR 2004, pp. 275–282. IEEE (2004)

    Google Scholar 

  7. Chavez-Roman, H., Ponomaryov, V.: Super resolution image generation using wavelet domain interpolation with edge extraction via a sparse representation. IEEE Geosci. Remote Sens. Lett. 11(10), 1777–1781 (2014)

    Article  Google Scholar 

  8. Demirel, H., Anbarjafari, G.: Image resolution enhancement by using discrete and stationary wavelet decomposition. IEEE Trans. Image Process. 20(5), 1458–1460 (2011)

    Article  MathSciNet  Google Scholar 

  9. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  10. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  11. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  12. Fattal, R.: Image upsampling via imposed edge statistics. ACM Trans. Graph. (TOG) 26, 95 (2007)

    Article  Google Scholar 

  13. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  14. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 349–356. IEEE (2009)

    Google Scholar 

  15. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  16. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  20. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  21. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  22. Kim, J., Kwon Lee, J., Mu Lee, K.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637–1645 (2016)

    Google Scholar 

  23. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 6, 1127–1133 (2010)

    Google Scholar 

  24. Kostrzewa, D., Piechaczek, S., Hrynczenko, K., Benecki, P., Nalepa, J., Kawulok, M.: Replication data for: super-resolution reconstruction using deep learning: should we go deeper? (2019). https://doi.org/10.7910/DVN/DKSPJF

  25. Kostrzewa, D., Skonieczny, Ł., Benecki, P., Kawulok, M.: B4MultiSR: a benchmark for multiple-image super-resolution reconstruction. Commun. Comput. Inf. Sci. 928, 361–375 (2018)

    Google Scholar 

  26. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_3

    Chapter  Google Scholar 

  27. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114. IEEE (2017)

    Google Scholar 

  28. Li, F., Jia, X., Fraser, D.: Universal HMT based super resolution for remote sensing images. In: 15th IEEE International Conference on Image Processing 2008, ICIP 2008, pp. 333–336. IEEE (2008)

    Google Scholar 

  29. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, vol. 1, pp. 136–144 (2017)

    Google Scholar 

  30. Nasrollahi, K., Moeslund, T.B.: Super-resolution: a comprehensive survey. Mach. Vis. Appl. 25(6), 1423–1468 (2014)

    Article  Google Scholar 

  31. Saxe, A.M., McClelland, J.L., Ganguli, S.: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120 (2013)

  32. Shan, Q., Li, Z., Jia, J., Tang, C.K.: Fast image/video upsampling. ACM Trans. Graph. (TOG) 27(5), 153 (2008)

    Article  Google Scholar 

  33. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  34. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint arXiv:1505.00387 (2015)

  35. Sun, J., Xu, Z., Shum, H.Y.: Image super-resolution using gradient profile prior. In: IEEE Conference on Computer Vision and Pattern Recognition 2008, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  36. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2790–2798. IEEE (2017)

    Google Scholar 

  37. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4539–4547 (2017)

    Google Scholar 

  38. Tai, Y.W., Liu, S., Brown, M.S., Lin, S.: Super resolution using edge prior and single image detail synthesis. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2400–2407. IEEE (2010)

    Google Scholar 

  39. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

  40. Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, L.: Image super-resolution: the techniques, applications, and future. Signal Process. 128, 389–408 (2016)

    Article  Google Scholar 

  41. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  42. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 3929–3938 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the European Space Agency through the SuperDeep project. The authors were supported by Statutory Research funds of Institute of Informatics, Silesian University of Technology, Poland: BKM-556/RAU2/2018 (DK, PB, JN) and 02/020/BK_18/0128 (MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Kostrzewa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kostrzewa, D., Piechaczek, S., Hrynczenko, K., Benecki, P., Nalepa, J., Kawulok, M. (2019). Super-Resolution Reconstruction Using Deep Learning: Should We Go Deeper?. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Paving the Road to Smart Data Processing and Analysis. BDAS 2019. Communications in Computer and Information Science, vol 1018. Springer, Cham. https://doi.org/10.1007/978-3-030-19093-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19093-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19092-7

  • Online ISBN: 978-3-030-19093-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics